CHAPTER 15

GENERAL THEORY OF CYLINDRICAL SHELLS

114. A Circular Cylindrical Shell Loaded Symmetrically with Respect
to Its Axis. In practical applications we frequently encounter problems
in which a circular cylindrical shell is submitted to the action of forces
distributed symmetrically with respect to the axis of the cylinder. The
stress distribution in cylindrical boilers submitted to the action of steam
pressure, stresses in cylindrical containers having a vertical axis and sub-
mitted to internal liquid pressure, and stresses in circular pipes under
uniform internal pressure are examples of such problems.

Fie. 235

To establish the equations required for the solution of these problems
we consider an element, as shown in Figs. 228a¢ and 235, and consider the
equations of equilibrium. It can be concluded from symmetry that the
membrane shearing forces N, = N, vanish in this case and that forces
N, are constant along the circumference. Regarding the transverse
shearing forces, it can also be concluded from symmetry that only the
forces Q. .do not vanish. Considering the moments acting on the ele-
ment in Fig. 235, we also conclude from symmetry that the twisting
moments M,, = M,, vanish and that the bending moments M, are con-
stant along the circumference. Under such conditions of symmetry

466
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three of the six equations of equilibrium of the element are identically
satisfied, and we have to consider only the remaining three equations,
viz., those obtained by projecting the forces on the z and z axes and by
taking the moment of the forces about the y axis. Assuming that the
external forces consist only of a pressure normal to the surface, these
three equations of equilibrium are

dN, _
e adxde =0
Lfig’ad:cd<p+N,,dzdcp+Zadxd¢=0 (a)
M. B
I adrde — Q.adrde =0

The first one indicates that the forces N, are constant,! and we take them
equal to zero in our further discussion. If they are different from zero,
the deformation and stress corresponding to such constant forces can be
easily calculated and superposed on stresses and deformations produced
by lateral load. The remaining two equations can be written in the
following simplified form:

sz + l N¢ _ _Z
dx a

M, ®
dz Q=0

These two equations contain three unknown quantities: N,, @,, and M..
To solve the problem we must therefore consider the displacements of
points in the middle surface of the shell.

From symmetry we conclude that the component » of the displace-
ment in the circumferential direction vanishes. We thus have to con-
sider only the components « and w in the z and z directions, respectively.
The expressions for the strain components then become

du w
€z = az €p = — P (c)
Hence, by applying Hooke’s law, we obtain
Eh Eh  (du w
Nz=r——yz(‘z+“v>=m(%‘”&‘)= @
Eh Eh w du
Ne =56t re) = T‘-‘ﬁ(_a“““”d_x)
From the first of these equations it follows that
du _ w
dz a

1 The effect of these forces on bending is neglected in this discussion.,
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and the second equation gives
Ehw
Ne=—=—+ (e
Considering the bending moments, we conclude from symmetry that
there is no change in curvature in the circumferential direction. The
curvature in the z direction is equal to —d?w/dz?. Using the same equa-
tions as for plates, we then obtain

M, =vM,
- _p%w )
M.=-Dzs
Eh?
where D= m—_Ts)

is the flexural rigidity of the shell.
Returning now to Egs. (b) and eliminating Q. from these equations,
we obtain
aM, 1 _
@ Tale="7

from which, by using Egs. (¢) and (f), we obtain
d? d*w Eh
EF(DW)-*-?”)_Z @73)
All problems of symmetrical deformation of circular cylindrical shells
thus reduce to the integration of Eq. (273).
The simplest application of this equation is obtained when the thick-
ness of the shell is constant. Under such conditions Eq. (273) becomes

d'w | Eh

Using the notation
_ Er _3(1 =Y
B'= 5D = ~ o (275)
Eq. (274) can be represented in the simplified form
dw Z
T + 484 = D (276)

This is the same equation as is obtained for a prismatical bar with a
flexural rigidity D, supported by a continuous elastic foundation and
submitted to the action of a load of intensity Z.* The general solution
of this equation is

w = éf*(C, cos Bz + C, sin Bz)
+ ¢-82(C; cos Bx + Cy8in Bzx) + f(x) (277)

* See 8. Timoshenko, ‘“Strength of Materials,”’ part II, 3d ed., p. 2, 1956.
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in which f(z) is a particular solution of Eq. (276), and Cy, . . . , Cq are
the constants of integration which must be determined in each particular
case from the conditions at the ends of the cylinder.

Take, as an example, a long circular pipe submitted to the action of
bending moments M, and shearing forces @Qo, both uniformly distributed
along the edge x = 0 (Fig. 236). In this case
there is no pressure Z distributed over the sur-
face of the shell, and f(x) = 0 in the general solu- CF‘ Mo

r/

tion (277). Since the forces applied at the end
z = 0 produce a local bending which dies out
rapidly as the distance z from the loaded end
increases, we conclude.that the first term on ~
the right-hand, side of Eq. (277) must vanish.! C Py
Hence, C; = C; = 0, and we obtain Q% 0

w = e2(C; cos Bz + C4 sin ) ) Fro. 236

The two constants C; and C4 can now be determined from the conditions
at the loaded end, which may be written

(Mz)z—O = _D(d‘ﬁ"v> 0 = MO

dx? *
M. _ d3w _
(Qz)z—o - (dx >z—0 = D (d—x—d—>z—0 = QO
Substituting expression (g) for w, we obtain from these end conditions
1 M .
Cs = —2/3—3D(Q0+5Mo) C4=2/3—2_;) (0]
Thus the final expression for w is
~Bz
w = 2‘;—31) [BMo(sin pz — cos fz) — Qo cos Bz] (278)

The maximum deflection is obtained at the loaded end, where
1
(W)omo = — 23—31) (BMo + Qo) (279)

The negative sign for this deflection results from the fact that w is taken
positive toward the axis of the cylinder. The slope at the loaded end is

t Observing the fact that the system of forces applied at the end of the pipe is a
balanced one and that the length of the pipe may be increased at will, this follows also
from the principle of Saint-Venant; see, for example, 8. Timoshenko and J. N. Goodier,
‘““Theory of Elasticity,” 2d ed., p. 33, 1951.
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obtained by differentiating expression (278). This gives

dw eP= .
(d—ﬂc—)z=o = 28D [2BM ¢ cos Bz + Qo(cos B + sin Bx)]emo

= g 26Ma+ Q) (280)
By introducing the notation
¢(Bx) = e#*(cos Bz + sin Br)
¥(Br) = eF*(cos Bx — sin Bx)
6(Bx) = e#= cos Bz
¢t(Bx) = e~ sin Bz

the expressions for deflection and its consecutive derivatives can be
represented in the following simplified form:

(281)

w=— 2—31,—1) [BM o (82) + Qu(Bz)]

Z_’: - 2_;21_) [26M46(8z) + Qop(Bz))] 28
Z%’ - %LD (28M op(B2) + 2Qut (B2)]

Pw _ 1 iosm

4 = 3 [26Mox(8z) ~ Qu(B2)]

The numerical values of the functions ¢(Bz), ¥(8z), 6(8x), and ¢(Bx) are
given in Table 84.! The functions ¢(8z) and ¢ (8z) are represented graph-
ically in Fig. 237. It is seen from these curves and from Table 84

pmmp:
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Fia. 237

that the functions defining the bending of the shell approach zero as the
quantity Sz becomes large. This indicates that the bending produced in
the shell is of a local character, as was already mentioned at the beginning
when the constants of integration were calculated.

If the moment M, and the deflection w are found from expressions

! The figures in this table are taken from the book by H. Zimmermann, “Die
Berechnung des Eisenbahnoberbaues,” Berlin, 1888,
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(282), the bending moment M, is obtained from the first of the equa-
tions (f), and the value of the force N, from Eq. (¢). Thus all neces-
sary information for calculating stresses in the shell can be found.

115. Particular Cases of Symmetrical Deformation of Circular Cylin-
drical Shells. Bending of a Long Cylindrical Shell by a Load Uniformly
Distributed along a Circular Section (Fig. 238). If the load is far enough
from the ends of the cylinder, solution (278) can be used for each half of

(a) (b)
Fic. 238

the shell. From considerations of symmetry we conclude that the value
of Qo in this case is —P/2. We thus obtain for the right-hand portion

b= . P
w = 557D [BMo(sm B8xr — cos Bxr) + 5 o8 Bx] (a)
where z is measured from the cross section at which the load is applied.
To calculate the moment M, which appears in expression (a) we use
expression (280), which gives the slope at * = 0. In our case this slope

vanishes because of symmetry. Hence,

2[3Mo - 2£ = 0
and we obtain
M.=L ®)
48

Substituting this value in expression (a), the deflection of the shell
becomes

—pz
w = %@ (sin Bz + cos Bzr) = SﬁL;D ¢(82) (283)
and by differentiation we find
dw P : P
i —2ﬂme—5’ sin Br = — m—((ﬁx)
g}f = 28 g ;: D-e—ﬂf (sin Bz ~ cos Bx) = — 4;8LD ¥(8z) ©
d*w

P P
o = 483 55D e cos fr = 5D 6(8x)
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TasLe 84. TaBLE oF FuNCTIONS ¢, ¢, 6, AND ¢

Bz ¢ ¥ 0 ¢

0 1.0000 1.0000 1.0000 0

0.1 0.9907 0.8100 0.9003 0.0903
0.2 0.9651 0.6398 0.8024 0.1627
0.3 0.9267 0.4888 0.7077 0.2189
0.4 0.8784 0.3564 0.6174 0.2610
0.5 0.8231 0.2415 0.5323 0.2908
0.6 0.7628 0.1431 0.4530 0.3099
0.7 0.6997 0.0599 0.3798 0.3199
0.8 0.6354 —0.0093 0.3131 0.3223
0.9 0.5712 —0.0657 0.2527 0.3185
1.0 0.5083 —0.1108 0.1988 0.3096
1.1 0.4476 —0.1457 0.1510 0.2967
1.2 0.3899 —0.1716 0.1091 0.2807
1.3 0.3355 —-0.1897 0.0729 0.2626
1.4 0.2849 —0.2011 0.0419 0.2430
1.5 0.2384 —0.2068 0.0158 0.2226
1.6 0.1959 —0.2077 —0.0059 0.2018
1.7 0.1576 —0.2047 —0.0235 0.1812
1.8 0.1234 —0.1985 —0.0376 0.1610
1.9 0.0932 —0.1899 —0.0484 0.1415
2.0 0.0667 —-0.1794 —0.0563 0.1230
2.1 0.0439 —0.1675 —0.0618 0.1057
2.2 0.0244 —0.1548 —0.0652 0.0895
2.3 0.0080 —0.1416 —0.0668 0.0748
2.4 —0.0056 —0.1282 —0.0669 0.0613
2.5 —0.0166 —0.1149 —0.0658 0.0492
2.6 -0.0254 —0.1019 —0.0636 0.0383
2.7 —0.0320 —0.0895 —~0.0608 0.0287
2.8 —0.0369 -0.0777 —-0.0573 0.0204
2.9 —0.0403 —0.0666 —0.0534 0.0132
3.0 —0.0423 —0.0563 —0.0493 0.0071
3.1 —0.0431 —0.0469 —0.0450 0.0019
3.2 —0.0431 —0.0383 —0.0407 —0.0024
3.3 —0.0422 —0.0306 —0.0364 —0.0058
3.4 —0.0408 —-0.0237 -0.0323 —0.0085
3.5 —0.0389 —-0.0177 —0.0283 —0.0106
3.6 —0.0366 —-0.0124 —0.0245 —0.0121
3.7 —0.0341 ~0.0079 —0.0210 -—0.0131
3.8 —0.0314 —0.0040 —~0.0177 -0.0137
3.9 —0.0286 —0.0008 —0.0147 —0.0140
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Bz @ v o ¢

4.0 —0.0258 0.0019 -0.0120 -0.0139
4.1 —0.0231 0.0040 —0.0095 -0.0136
4.2 —0.0204 0.0057 —0.0074 —0.0131
4.3 —0.0179 0.0070 —0.0054 -0.0125
4.4 —0.0155 0.0079 —0.0038 —-0.0117
4.5 —0.0132 0.0085 —0.0023 -0.0108
4.6 —0.0111 0.0089 -0.0011 —0.0100
4.7 —0.0092 0.0090 0.0001 —0.0091
4.8 —0.0075 0.0089 0.0007 —0.0082
4.9 —0.0059 0.0087 0.0014 —-0.0073
5.0 —0.0046 0.0084 0.0019 —0.0065
5.1 —0.0033 0.0080 0.0023 —0.0057
5.2 —0.0023 0.0075 0.0026 —0.0049
5.3 —-0.0014 0.0069 0.0028 —0.0042
5.4 —0.0006 0.0064 0.0029 —0.0035
5.5 0.0000 0.0058 0.0029 —-0.0029
5.6 0.0005 0.0052 0.0029 —0.0023
5.7 0.0010 0.0046 0.0028 - —0.0018
5.8 0.0013 0.0041 0.0027 —0.0014
5.9 0.0015 0.0036 0.0026 —0.0010
6.0 0.0017 0.0031 0.0024 —0.0007
6.1 0.0018 0.0026 0.0022 —0.0004
6.2 0.0019 0.0022 0.0020 -0.0002
6.3 0.0019 0.0018 0.0018 +0.0001
6.4 0.0018 0.0015 0.0017 0.0003
6.5 0.0018 0.0012 0.0015 0.0004
6.6 0.0017 0.0009 0.0013 0.0005
6.7 0.0016 0.0006 0.0011 0.0006
6.8 0.0015 0.0004 0.0010 0.0006
6.9 0.0014 0.0002 0.0008 0.0006
7.0 0.0013 0.0001 0.0007 0.0006

Observing from Eqgs. (b) and (f) of the preceding article that

M,=-D

dw
dx?

dsw
Q= -Dg=

473

we finally obtain the following expressions for the bending moment and

shearing force:

P
Mz = Zﬁw(ﬂx)

Q= — F 0(60)

(284)
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The results obtained are all graphically represented in Fig. 239.
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It is

seen that the maximum deflection is under the load P and that its value

as given by Eq. (283) is

o}’ x
—== P Pag
Le -3—1-1- Wimax = = oL (285)
487" p 88D  2Eh
\ / "86% #@)  The maximum bending moment is
also under the load and is deter-
3 aw__ —P—‘f (8X) .
N4 T ag% mined from Eq. (284) as
Ty M P 28
ﬁ - Y max — T & 6
N ré\_ﬂ ’I 48 ( )
\ My = I% ¥ (@X) The maximur_n of the ab‘solut.e value
o of the shearing force is evidently
| K28 equal to P/2. The values of all
A - these quantities at a certain dis-
7~ Q x=-£ 6(8x) tance from the load can be readily
ra 2392 obtained by using Table 84. We

see from this table and from Fig.

239 that all the quantities that determine the bending of the shell are small
for z > x/B. This fact indicates that the bending is of a local character
and that a shell of length ! = 2x/8 loaded at the middle will have practi-
cally the same maximum deflection and the same maximum stress as a very

long shell.

Having the solution of the problem for the case in which a load is con-

centrated at a circular cross section, we can
readily solve the problem of a load dis-
tributed along a certain length of the cylinder

by applying the principle of superposition.
As an example let us consider the case of a

load of intensity ¢ uniformly distributed
along a length ! of a cylinder (Fig. 240).

Assuming that the load is at a considerable
distance from the ends of the eylinder, we can
use solution (283) to calculate the deflections.

%Y

Fia. 240

The deflection at a point A produced by an elementary ring load of an
intensity! ¢ d¢ at a distance £ from A is obtained from expression (283)

by substituting ¢ d¢ for P and £ for z and is

8113—63% e PE(cos B¢ + sin BE)

The deflection produced at A by the total load distributed over the

1 ¢ d¢ is the load per unit length of circumference.
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length [ is then

w = /; ' 8‘15?; e~*¢(cos £ + sin BE) + /; i Sqﬂ‘ff) e~?¢(cos BE + sin BE)
- 9@

= 5Eh (2 — e~® cos Bb — e~P¢ cos SB¢)

The bending moment at a point A can be calculated by similar appli-
cation of the method of superposition.

Cylindrical Shell with a Uniform Internal Pressure (Fig. 241). If the
edges of the shell are free, the internal pressure p produces only a hoop
stress

O't=!%:1

and the radius of the cylinder increases by the amount

as; _ pa’

=T m @

If the ends of the shell are built in, as shown in Fig. 2414, they cannot
move out, and local bending occurs at the edges. If the length I of the

A 1 --mmmmmaes > oo mmm e R »

N 0
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Fig. 241
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shell is sufficiently large, we can use solution (278) to investigate this
bending, the moment M, and the shearing force @, being determined
from the conditions that the defiection and the slope along the built-in
edge z = 0 (Fig. 24la) vanish. According to these conditions, Egs.
(279) and (280) of the preceding article become

1
—2,8_3D(BM°+Q°) =39
1
35D (28Mo+ Qo) =0
where & is given by Eq. (d).
Solving for M, and Qo, we obtain

My, =28Ds = L. Qy=—48Ds = —

o (287)

>
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We thus obtain a positive bending moment and a negative shearing force
acting as shown in Fig. 241a. Substituting these values in expressions
(282), the deflection and the bending moment at any distance from the
end can be readily calculated using Table 84.

If, instead of built-in edges, we have simply supported edges as shown
in Fig. 241b, the deflection and the bending moment M, vanish along the
edge M, = 0, and we obtain, by using Eq. (279),

Qo = —28°Dd

By substituting these values in solution (278) the deflection at any dis-
tance from the end can be calculated.

It was assumed in the preceding discussion that the length of the shell
is large. If this is not the case, the bending at one end cannot be con-
sidered as independent of the conditions at the other end, and recourse
must be had to the general solution (277), which contains four constants
of integration. The particular solution of Eq. (276) for the case of uni-
form load (Z = —p) is —p/48*D = —pa?/Eh. The general solution
(277) can then be put in the following form by the introduction of hyper-
bolic functions in place of the exponential functions:

2
w= — % + C; sin Bz sinh Bx + C: sin Bz cosh Bz
~+ C; cos Bz sinh Bz 4 C, cos Bz cosh Bz (e)

If the origin of coordinates is taken at the middle of the cylinder, as shown
in Fig. 241b, expression (¢) must be an even function of z. Hence

Co=0C3 =0 N

The constants C; and €4 must now be selected so as to satisfy the con-
ditions at the ends. If the ends are simply supported, the deflection and
the bending moment M, must vanish at the ends, and we obtain

d?
@iz =0  (55) =0 ©

Substituting expression (¢) in these relations and remembering that
Cy=C; =0, we find

2
—Z,ih+C;sinasinha+C4cOSacosha=0 )
Cycos @ cosh a — Cysin a sinh a = 0
where, for the sake of simplicity,
L )
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From these equations we obtain

C, = pa? sin « sinh « _ pa* _2sin asinh o

'~ Fh sin? a sinh? « + cos? @ cosh? @ Eh cos 2a + cosh 2¢ )
C pa’ cos a cosh a pa? 2 cos a cosh o

Y =

= Fh sin’ a sinh? & + cos? « cosh? @ Eh ¢os 2a -+ cosh 2a

Substituting the values (j) and (f) of the constants in expression (¢) and
observing from expression (275) that

Eh 64D

- = 4Dpt = 7 (k)
we obtain
_ _ b _ 2sinasinha . .
Y=~ Dot ( ¢os 2 + cosh 2¢ "1 Bz sinh fz

2 cos a cosh a

= 555 Za - cosh Za °°° 67 cosh Bx) @

In each particular case, if the dimensions of the shell are known, the
quantity «, which is dimensionless, can be calculated by means of
notation (¢) and Eq. (275). By substituting this value in expression ()
the deflection of the shell at any point can be found.

For the middle of the shell, substituting # = 0 in expression (I), we
obtain

(0)ems = — plt _ _2cos acosh a (m)
=0= 7 B1Dat cos 2a + cosh 2a

When the shell is long, « becomes large, the second term in the paren-
theses of expression (m) becomes small, and the deflection approaches
the value (d) calculated for the case of free ends. This indicates that in
the case of long shells the effect of the end supports upon the deflection
at the middle is negligible. Taking another extreme case, 2., the case
when « is very small, we can show by expanding the trigonometric and
hyperbolic functions in power series that the expression in parentheses in
Eq. (m) approaches the value 5a4/6 and that the deflection (I) approaches
that for a uniformly loaded and simply supported beam of length ! and
flexural rigidity D.

Differentiating expression (I) twice and multiplying it by D, the bend-
ing moment is found as

d*w pl? sin @ sinh &
M,=-D— =2 (_Z_2°2 7%
dxz? 4a? (cos 2a + cosh 2a

___cos acosh &

cos8 2a + cosh 2a

cosh Bz cos Bz

sin Bz sinh Bx) (n)
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At the middle of the shell this moment is

_ Bli sin « sinh )
4a? cos 2o + cosh 2«

It is seen that for large values of «, that is, for long shells, this moment
becomes negligibly small and the middle portion is, for all practical pur-
poses, under the action of merely the hoop stresses pa/h.

The case of a cylinder with built-in edges (Fig. 241a) can be treated in
a, similar manner. Going directly to the final result,! we find that the
bending moment M, acting along the built-in edge is

(Mz)z=0 =

_ psih2% —sin% _ p
Mo = 28% sinh 2« + sin 2a 28t x2(2e) (288)
sinh 2a — sin 2a

x:20) = pos T sin 2«

In the case of long shells, « is large, the factor x2(2a) in expression (288)
approaches unity, and the value of the moment approaches that given
by the iirst of the expressions (287). For shorter shells the value of the
factor x2(2) in (288) can be taken from Table 85.

where

TaBLE 85
2 x1(2a) x2(2a) x3(2a)
0.2 5.000 0.0068 0.100
0.4 2.502 0.0268 0.200
0.6 1.674 0.0601 0.300
0.8 1.267 0.1065 0.400
1.0 1.033 0.1670 0.500
1.2 0.890 0.2370 0.596
1.4 0.803 0.3170 0.689
1.6 0.755 (.4080 0.775
1.8 0.735 0.5050 0.855
2.0 0.738 0.6000 0.925
2.5 0.802 0.8220 1.045
3.0 0.893 0.9770 1.090
3.5 0.966 1.0500 1.085
4.0 1.005 1.0580 1.050
4.5 1.017 1.0400 1.027
5.0 1.017 1.0300 1.008

Cylindrical Shell Bent by Forces and Moments Distributed along the
Edges. In the preceding section this problem was discussed assuming

1 Both cases are discussed in detail by I. G. Boobnov in his “Theory of Structure
of Ships,”” vol. 2, p. 368, St. Petersburg, 1913. Also included are numerical tables
which simplify the calculations of moments and deflections.
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that the shell is long and that each end can be treated independently.
In the case of shorter shells both ends must be considered simultaneously
by using solution (e) with four constants of integration. Proceeding as
in the previous cases, the following results can be obtained. For the
case of bending by uniformly distributed shearing forces @, (Fig. 242a),
the deflection and the slope at the ends are

_ 2QuBa* cosh 2a + cos 2a _  2QBa?

W)emoomt = = —pp— G0 %a Fem2a =~ ER X2 (289
dw - 4 2QoB%? sinh 2a — sin 2a " 2Q.8%a2 (26) )
A% )ovemi  — Eh sinh 2a + sin 2« ER X2F

In the case of bending by the moments M, (Fig. 242b), we obtain
(w) _ _ 2MB%*sinh 20 — sin 2a 2M B2a® (20)
bl = Eh  sinh 2a 4 sin 2o En X2 (290)
dw — 4M B%a? cosh 2o — cos 2a _ + 4 M B%a (20)
a7 Jomoomt EL  sinh 2a + sin 2« —  ER X3¢

In the case of long shells, the factors xi, x2, and x; in expressions (289)
and (290) are close to unity, and the results coincide with those given by

Qo Qo M M
y o~ ° N
z h* * A\l J/

iz

[ - -~ 1 ------3 ] v - 1------ >

- . 2d - -

(a) ° @ °

Fia. 242

expressions (279) and (280). To simplify the calculations for shorter
shells, the values of functions xi, x2, and x; are given in Table 85.

Using solutions (289) and (290), the stresses in a long pipe reinforced
by equidistant rings (Fig. 243) and submitted to the action of uniform
internal pressure p can be readily discussed.

Assume first that there are no rings. Then, under the action of internal
pressure, hoop stresses ¢; = pa/h will be produced, and the radius of the
pipe will increase by the amount

=p_a2
S =Fnh

Now, taking the rings into consideration and assuming that they are abso-
lutely rigid, we conclude that reactive forces will be produced between
each ring and the pipe. The magnitude of the forces per unit length of
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the circumference of the tube will be denoted by P. The magnitude of
P will now be determined from the condition that the forces P produce a
deflection of the pipe under the ring equal to the expansion & created by
the internal pressure p. In calculating this deflection we observe that a
portion of the tube between two adjacent rings may be considered as the
shell shown in Fig. 242a and b. In this case @y = —4P, and the mag-
nitude of the bending moment M, under a ring is determined from the
condition that dw/dz = 0 at that point.

; —:-_7;::--:{,‘ oo . Hence from Eqs. (289) and (290) we find
| I 1 A B atza) + 228 (0a) = 0
E‘; i:i: EEL i from which

If the distance ! between the rings is large,! the quantity
L wam—m
Za—ﬂl_\/a_h\/?,(l v?)

is also large, the functions x2(2a) and x3;(2a) approach unity, and the
moment M, approaches the value (286). For calculating the force P
entering in Eq. (p) the expressions for deflections as given in Eqs. (289)
and (290) must be used. These expressions give

Ppa® PBa? x}(2«) _ . _ pa®
R X% T 35k x@a) ~ ° T R
1x3(2a) | _ 6Eh
or Pg [X1(2a) T 3G | @ P (291)
For large values of 2« this reduces to
PBa® _ 5
2Eh

which coincides with Eq. (285). When 2« is not large, the value of the
reactive forces P is calculated from Eq. (291) by using Table 85. Solv-
ing Eq. (291) for P and substituting its expression in expression (p),
we find

My = 2%2 x2(2a) (292)

This coincides with expression (288) previously obtained for a shell with
built-in edges. ;
To take into account the extension of rings we observe that the reactive

1For » = 0.3, 2« = 1.285l/~/Gk,
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forees P produce in the ring a tensile force Pa and that the corresponding
increase of the inner radius of the ring is!

=._P_‘12
4B

where A is the cross-sectional area of the ring. To take this extension
into account we substitute & — §; for § in Eq. (291) and obtain

o[ iee) - 2] -, _ B2 -

&

From this equation, P can be readily obtained by using Table 85, and
the moment found by substituting p — (Ph/4) for p in Eq. (292).

If the pressure p acts not only on the cylindrical shell but also on the
ends, longitudinal forces

= pa
N,—2

are produced in the shell. The extension of the radius of the eylinder is

then

rop2fy 1

8 = Eh (1 5 v)
and the quantity p(1 — }») must be substituted for p in Eqs. (292) and
(293).

Equations (293) and (291) can also be used in the case of external
uniform pressure provided the compressive stresses in the ring and in
the shell are far enough from the critical stresses at which buckling may
occur.? This case is of practical importance in the design of submarines
and has been discussed by several authors.?

116. Pressure Vessels. The method illustrated by the examples of the
preceding article can also be applied in the analysis of stresses in ¢ylindri-
cal vessels submitted to the action of internal pressure.* In discussing
the ‘“membrane theory” it was repeatedly indicated that this theory fails
to represent the true stresses in those portions of a shell close to the

1Jt is assumed that the cross-sectional dimensions of the ring are small in com-
parison with the radius a.

? Buckling of rings and cylindrical shells is discussed in S. Timoshenko, “Theory
of Elastic Stability,” 1936.

3 See paper by K. von Sanden and K. Giinther, “ Werft und Reederei,”’ vol. 1, 1920,
pp. 163-168, 189-198, 216-221, and vol. 2, 1921, pp. 505-510.

48ee also M. Esslinger, “Statische Berechnung von Kesselboder,” Berlin, 1952;
G. Salet and J. Barthelemy, Bull. Assoc. Tech. Maritime Aeronaut., vol. 44, p. 505,
1945; J. L. Maulbetsch and M. Hetényi, ASCE Design Data, no. 1, 1944, and F.
Schultz-Grunow, Ingr.-Arch., vol. 4, p. 545, 1933; N. L. Svensson, J. Appl. Mechanics,
vol. 25, p. 89, 1958.
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edges, since the edge conditions usually cannot be completely satisfied
by considering only membrane stresses. A similar condition in which
the membrane theory is inadequate is found in eylindrical pressure vessels
at the joints between the cylindrical portion and the ends of the vessel.
At these joints the membrane stresses are usually accompanied by local
bending stresses which are distributed symmetrically with respect to the
axis of the cylinder. These local stresses can be calculated by using
solution (278) of Art. 114.

Let us begin with the simple case of a cylindrical vessel with hemi-
spherical ends (Fig. 244).! At a sufficient distance from the joints mn

Fi1c. 244

and min, the membrane theory is accurate enough and gives for the
cylindrical portion of radius a

N,=£2g N, = pa (@)

where p denotes the internal pressure.
For the spherical ends this theory gives a uniform tensile force

_pa
-5 (®)

The extension of the radius of the cylindrical shell under the action of

the forces (a) is
_patf, v
b1 = Eh (1 2) (©)

and the extension of the radius of the spherical ends is
= Pe’ oy
0y = 2% 1 - d)

Comparing expressions (¢) and (d), it can be concluded that if we con-
sider only membrane stresses we obtain a discontinuity at the joints as
represented in Fig. 244b. This indicates that at the joint there must act

! This case was discussed by E. Meissner, Schweiz. Bauzlg., vol. 86, p. 1, 1925.
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shearing forces @, and bending moments M, uniformly distributed along
the circumference and of such magnitudes as to eliminate this discon-
tinuity. The stresses produced by these forces are sometimes called
discontinuity stresses.

In calculating the quantities Qo and M, we assume that the bending is
of a local character so that solution (278) can be applied with sufficient
accuracy in discussing the bending of the cylindrical portion. The
investigation of the bending of the spherical ends represents a more
complicated problem which will be fully discussed in Chap. 16. Here
we obtain an approximate solution of the problem by assuming that the
bending is of importance only in the zone of the spherical shell close to
the joint and that this zone can be treated as a portion of a long cylindri-
cal shell! of radius a. If the thickness of the spherical and the cylindrical
portion of the vessel is the same, the forces Qo produce equal rotations
of the edges of both portions at the joint (Fig. 244b). This indicates
that M, vanishes and that Q, alone is sufficient to eliminate the discon-
tinuity. The magnitude of Qo is now determined from the condition that
the sum of the numerical values of the deflections of the edges of the two
parts must be equal to the difference 8, — 8 of the radial expansions
furnished by the membrane theory. Using Eq. (279) for the deflections,
we obtain

Qo _ 5 5 PO
8D ! * " 2Eh
from which, by using notation (275),
_pa8D _ p
= SEr ~ % @)

Having obtained this value of the force @, the deflection and the bend-
ing moment M, can be calculated at any point by using formulas (282),
which give?

—_p¥Pv_ _
M.=-Do3 = 8 ¢ (Bz)

Substituting expression (¢) for @, and expression (275) for 8 in the
formula for M., we obtain

- _ ahp
M, = SV3a = $(Br) N

tE. Meissner, in the above-mentioned paper, showed that the error in the mag-
nitude of the bending stresses as calculated from such an approximate solution is small
for thin hemispherical shells and is smaller than 1 per cent if a/h > 30.

2 Note that the direction of Qo in Fig. 244 is opposite to the direction in Fig. 236.
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This moment attains its numerical maximum at the distance x = 7/48,
at which point the derivative of the moment is zero, as can be seen from
the fourth of the equations (282).

Combining the miaximum bending stress produced by M, with the
membrane stress, we find

3 (T\_ 1993
(@2)mex = 35 4h\/3_(1_—y2)§<4) 1.203 o @

This stress which acts at the outer surface of the cylindrical shell is about
30 per cent larger than the membrane stress acting in the axial direction.
In calculating stresses in the circumferential direction in addition to the
membrane stress pa/h, the hoop stress caused by the deflection w as well
as the bending stress produced by the moment M, = »M, must be con-
sidered. In this way we obtain at the outer surface of the cylindrical shell

_ap _Bw_ 6y, apl, 1 3
Taking » = 0.3 and using Table 84, we find
(0)me = 103222 atpr = 1.85 )

h

Since the membrane stress is smaller in the ends than in the cylinder
sides, the maximum stress in the spherical ends is
always smaller than the calculated stress (k). Thus
the latter stress is the determining factor in the design
of the vessel.

The same method of calculating discontinuity stresses
can be applied in the case of ends having the form of an
ellipsoid of revolution. The membrane stresses in this

A case are obtained from expressions (263) and (264) (see

Fic. 245 page 440). At the joint mn which represents the
equator of the ellipsoid (Fig. 245), the stresses in the

direction of the meridian and in the equatorial direction are, respectively,

a a a? .
a¢=% ae=%(l—§p) @
The extension of the radius of the equator is
1= ooy = PO 2
8 = b4 (00 — vo,) = Fh (1 3t 2)

Substituting this quantity for 3, in the previous calculation of the shear-
ing force Qo, we find

m

P

. pa2 a?

b — 8 = Ty op
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and, instead of Eq. (e), we obtain
_p
Qo = 86 ?
It is seen that the shearing force @, in the case of ellipsoidal ends is
larger than in the case of hemispherical ends in the ratio a?/b%. The
discontinuity stresses will evidently increase in the same proportion.
For example, taking a/b = 2, we obtain, from expressions (g) and (h),

_ap 3ap T\ _ ap

(0)mae = 1.128 2P
Again, (0;)m.x is the largest stress and is consequently the determining
factor in design.?

117. Cylindrical Tanks with Uniform Wall Thickness. If a tank is sub-
mitted to the action of a liquid pressure, as shown in Fig. 246, the stresses
in the wall can be analyzed by using Eq. (276). Substituting in this
equation

Z = —v(@d - 2) (a)
where v is the weight per unit volume of the liquid, we obtain
diw yd —2) oy a9 e
— 4w = - T ®) e
dat b B
A particular solution of this equation is , :
__1d=-2) _ _y(@= e d
Wi= - D yoi) © ) 5
This expression represents the radial expansion z | Q hio\’y
of a cylindrical shell with free edges under the 77 i’ w 24{ 7
1G.

action of hoop stresses. Substituting expres-
sion (¢) in place of f(z) in expression (277), we obtain for the complete solu-
tion of Eq. (b)

_ pe . 8a . y{d — z)a?
w = #%(C, cos Bz + Cssin Bz) + ¢7*(C; cos Bz + Cysin Bz) — g

In most practical cases the wall thickness A is small in comparison with
both the radius a and the depth d of the tank, and we may consider the
shell as infinitely long. The constants C: and C. are then equal to zero,

1 More detail regarding stresses in boilers with ellipsoidal ends can be found in the
book by Hshn, “Uber die Festigkeit der gewdlbten Béden und der Zylinderschale,”
Zirich, 1927. Also included are the results of experimental investigations of dis-
continuity stresses which are in a good agreement with the approximate solution.
See also Schultz-Grunow, loc. cit.
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and we obtain

w = ¢ #*(C; cos Br + C,sin Bz) — 'y(d%x)a_% ()]

The constants C; and C, can now be obtained from the conditions at the
bottom of the tank.  Assuming that the lower edge of the wall is built
into an absolutely rigid foundation, the boundary conditions are

yatd

(W)seo = C3 — T

(%)z=o = [—ﬁCae-"’(cos Bz + sin Bx)

. 2
+ BC.e~f=(cos Bz — sin Bzx) -+ 2—%]2—0 =B(Cs — C3) + % =0

From these equations we obtain

2 2

Expression (d) then becomes

e e

from which, by using the notation of Eqs. (281), we obtain

w=_%‘[1_5—0(&)—(1—53);(3@] ©

From this expression the deflection at any point can be readily calculated
by the use of Table 84. The force N, in the circumferential direction is
then

M= =B a1 -5 06 - (1- p)en | O

From the second derivative of expression (¢) we obtain the bending
moment
_ _pndw _ 28%vae:Dd _ 1
M= TR = TP —sa) + (1 - ) o6am
yadh 1
TS Vz)[ () +< ] d) (Bx)] @

Having expressions (f) and (g), the maximum stress at any point can
readily be calculated in each particular case. The bending moment has
its maximum value at the bottom, where it is equal to

My =(1- L) ___vedh
Mo = Mo = (1 - g7) Tie—s ®
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The same result can be obtained by using solutions (279) and (280)
(pages 469, 470). Assuming that the lower edge of the shell is entirely
free, we obtain from expression (c)

o yaid dw, _ 'y_a2 .
Wi)smo = = - (dx )z,o = Eh ®
To eliminate this displacement and rotation of the edge and thus satisfy
the edge conditions at the bottom of the tank, a shearing force @, and
bending moment M, must be applied as indicated in Fig. 246. The
magnitude of each of these quantities is obtained by equating expressions
(279) and (280) to expressions (7) taken with reversed signs. This gives
1 _ ya?d
—W(BM0+ Qo) = +_._ET
L
Eh
From these equations we again obtain expression (k) for M,, whereas for
the shearing force we find!

_ yadh 1 .
%= VI2(L — ) <2ﬂ 3) V)

Taking, as an example, a = 30 ft, d = 26 ft, h = 14 in., ¥ = 0.03613 Ib per in.3,
and » = 0.25, we find 8 = 0.01824 in."! and 8d = 5.691. For such a value of gd our
assumption that the shell is infinitely long results in an accurate value for the moment
and the shearing force, and we obtain from expressions
(k) and (j) fe - mm e 2q ------- >

Mo = 13,960 in.-lb per in. Qo = —563.6 1b per in- el sy

I

1
257D (28M, 4+ Qo)

|
|
|
|
n'
-J

3

In the construction of steel tanks, metallic sheets of ™
several different thicknesses are very often used as
shown in Fig. 247. Applying the particular solution m; .
(c) to each portion of uniform thickness, we find that
the differences in thickness give rise to discontinuities
in the displacement w; along the joints mn and min,. a

These discontinuities, together with the displace- Fig. 247
ments at the bottom ab, can be removed by apply-
ing moments and shearing forces. Assuming that the vertical dimension of each
portion is sufficiently large to justify the application of the formulas for an infinitely
large shell, we calculate the discontinuity moments and shearing forces as before by
using Eqs. (279) and (280) and applying at each joint the two conditions that the
adjacent portions of the shell have equal deflections and a common tangent. If the
use of formulas (279) and (280) derived for an infinitely long shell cannot be justified,
the general solution containing four constants of integration must be applied to each
portion of the tank. The determination of the constants under such conditions
becomes much more complicated, since the fact that each joint cannot be treated

=}

N\ S g

o

1 The negative sign indicates that Qo has the direction shown in Fig. 246 which is
opposite to the direction used in Fig. 236 when deriving expressions (279) and (280).



