CHAPTER 5

SIMPLY SUPPORTED RECTANGULAR PLATES

27. Simply Supported Rectangular Plates under Sinusoidal Load.
Taking the coordinate axes as shown in Fig. 59, we assume that the load
distributed over the surface of the plate is given by the expression

— oosin ™ sin ™Y
¢ = gosin — sin (a)

in which g, represents the intensity of the load at the center of the plate.
The differential equation (103) for the deflection

surface in this case becomes ~ x
*w d'w Fw _ g . wr . wY E
£4+2ax2—ay2+ay4—5§ln‘a‘sln'y (b) ?
The boundary conditions for simply supported Y
edges are
w =20 M,=0 fort =0andx =a y
=0 M,=0 fory=0and y = b Fie. 59

Using expression (101) for bending moments and observing that, since
w.= 0 at the edges, ?w/9z? = 0 and #*w/dy? = O for the edges parallel
to the x and y axes, respectively, we can represent the boundary condi-~
tions in the following form:

2
(1) w=0 (2)3—;—;’=0 forz =0andz = a

*w )
B)w=20 (4)5—1/—2=0 fory=0andy =%

It may be seen that all boundary conditions are satisfied if we take for
deflections the expression
- Coin ™ sin ™
w = C sin o Sin b (d)

in which the constant C must be chosen so as to satisfy Eq. (b). Substi-
tuting expression (d) into Eq. (b), we find

1 1\ q
”(?+ﬁ)0=ﬁ
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and we conclude that the deflection surface satisfying Eq. (b) and bound-
ary conditions (c) is

w = o . BT . TY (e)

——————1——2 sin -; sin ?
AD + b2

Having this expression and using Egs. (101) and (102), we find

M, =_ I 1 ™ sin ™
M . (1 1) ( -+ b2> sin — sin b
7| =

at " bt
1
v CRE B )
”2<65+F>
M,,,=—q;£%cosa—cos1—%q
“@+Q

It is seen that the maximum deflection and the maximum bending
moments are at the center of the plate. Substituting z = a/2, y = b/2
in Egs. (¢) and (f), we obtain

e = P 124
"m(m+59
q 1 v

(Mz)max = ———I—OT—, <;1—2 + —;)

D

az b2
- @ (r 1
(Mu)mx = \ 1 1 2 (az + bz)

T\& "B
In the particular case of a square plate, a = b, and the foregoing

formulas become

(125)

ot 1 4+ v)qoa?
Wmax = 4?II'_AD (Mz)max = (My)nusx = (47% (126)

We use Eqs. (106) and (107) to calculate the shearing forces and obtain

= qo % in ™Y
Q. I 1 cos — sin
“\a T @
g
Q,,=—q+sinﬁcosr—y
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To find the reactive forces at the supported edges of the plate we pro-
ceed as was explained in Art. 22. For the edge z = a we find

oM., _ Qo Ty
(Q,— y) - (a2+ - )S‘“b *)
wa(a—2+b2>

In the same manner, for the edge y = b,

Vy=<QV_a]a‘izy)y=b= - lqo 1 z(bl2+2a2 V)Sin% (1’)
b (a—2 + Eg)
Hence the pressure distribution follows a sinusoidal law. The minus sign
indicates that the reactions on the plate act upward. From symmetry
it may be concluded that formulas (h) and (¢) also represent pressure dis-
tributions along the sides # = 0 and y = O, respectively. The resultant
of distributed pressures is

2 1 2~ b,
(1 qo 1>2[ < + - )[) sm%qdy
£ +

a® ' b
1(1  2—w\ [o. = _ Aqead 8qo(1 — ») .
+b(b2+—a2 )/;smad.v]— " + 2 1.1 ;s ()
ab + B
4qoab / / Qo sin ™% sin T Y dx dy k)

it can be concluded that the sum of the distributed reactions is larger
than the total load on the plate given by expression (k). This result can
be easily explained if we note that, proceeding as described in Art. 22,
we obtain not only the distributed reactions
but also reactions concentrated at the cor-
ners of the plate. These concentrated re-
actions are equal, from symmetry; and their
magnitude, as may be seen from Fig. 51, is

2q°(1 —_ V) ( )
oLy ] ?
ab + % Fia. 60

The positive sign indicates that the reactions act downward. Their sum
is exactly equal to the second term in expression (j). The distributed
and the concentrated reactions which act on the plate and keep the load,
defined by Eq. (a), in equilibrium are shown graphically in Fig. 60. It
may be seen that the corners of the plate have a tendency to rise up

Observing that

R = 2(M2v)1=a.y-b =
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under the sction of the applied load and that the concentrated forces R
must be applied to prevent this.

The maximum bending stress is at the center of the plate. Assuming
that @ > b, we find that at the center M, > M.. Hence the maximum
bending stress is

6(M )mn.x 6(10 14 1
(ay)mx = hZ; = <1 1>2 a"'z + b_é
el = =
a? ' b?
The maximum shearing stress will be at the middle of the longer sides of
the plate. Observing that the total transverse force V, = Q, — ag{v’”

is distributed along the thickness of the plate according to the parabolie
law and using Eq. (¢), we obtain

3 1 2~
o = —— A3+ 25)

If the sinusoidal load distribution is given by the equation

g = qo sin T sin 2Y (m)
a b
where m and n are integer numbers, we can proceed as before, and we
shall obtain for the deflection surface the following expression:

0 ..omrT . Nw
g sin —— SIn —y

2 2\ 2 b
T4D<%+n> a

w =

(127)
T

from which the expressions for bending and twisting moments can be

readily obtained by differentiation.

28. Navier Solution for Simply Supported Rectangular Plates. The
solution of the preceding article can be used in calculating deflections
produced in a simply supported rectangular plate by any kind of loading
given by the equation

q = fzy) (@)

For this purpose we represent the function f(z,y) in the form of a double
trigonometric series:!

fay) = Z Z Gmn SiD "l? sin '%/ (128)
m=1n=1

! The first solution of the problem of bending of simply supported rectangular plates
and the use for this purpose of double trigonometric series are due to Navier, who
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To calculate any particular coefficient @..-»’ of this series we multiply both
sides of Eq. (128) by sin (n'my/b) dy and integrate from 0 to . Observing

that
b
sin 7Y gin 2TY wry dy =0 when n = n'
0 b b
’ Y sin n'ry dy —13 when n = n'
. sin —2 5 5 5 =
we find in this way
/ f(x,y) sin XY Wy dy = 12) Z O’ SIND %E ®)

m=1

Multiplying both sides of Eq. (b) by sin (m’zz/a) dz and integrating from
0 to a, we obtain

/ / fa,g) sin ™
WY g dy (129)

O = / / fy) sin = b

Performing the integration indicated in expression (129) for a given load
distribution, 7.e., for a given f(z,y), we find the coefficients of series (128)
and represent in this way the given load as a sum of partial sinusoidal
loadings. The deflection produced by each partial loading was discussed
in the preceding article, and the total deflection will be obtained by sum-
mation of such terms as are given by Eq. (127). Hence we find

n'ry _ab
L sin 2TY 3 de dy = Z Gw'n

from which

sm

® @

_ 1 Gmn . MAT . NwY
w—mg E — n2>2 sin —— sin — (130)

m=1 n=1 F FZ
Take the case of a load uniformly distributed over the entire surface

of the plate as an example of the application of the general solution (130).
In such a case

flz,y) = qo

where gy is the intensity of the uniformly distributed load. ¥rom formula
(129) we-obtain

Cumn 4q° / / sm——sm by dz dy — 1640 (c)

Timn

presented a paper on this subject to the French Academy in 1820. The abstract of the
paper was published in Bull. soc. phil.-math., Paris, 1823. The manuseript is in the
library of I’Ecole des Ponts et Chaussées.
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where m and n are odd integers. If m or n or both of them are even
numbers, a.., = 0. Substituting in Eq. (130), we find
mrr . nwy

3 16q0 s —a- sSin T

=35 m2+n2 2
m=1 n=1 T\ GE T 32

wherem = 1,3,5, .. .andn =1,38,5, .. ..

In the case of a uniform load we have a deflection surface symmetrical
with respect to the axes x = a/2, y = b/2; and quite naturally all terms
with even numbers for m or n in series (131) vanish, since they are
unsymmetrical with respect to the above-mentioned axes. The maxi-
mum deflection of the plate is at its center and is found by substituting
x = a/2, y = b/2in formula (131), giving

(131)

16(10 (—1) 2

Woax = —575 ]
n D m2 n2

me1 n=1 M (h—z +ﬁ)

This is a rapidly converging series, and a satisfactory approximation is
obtained by taking only the first term of the series, which, for example,
in the case of a square plate gives

(132)

_ 4qat _ qoa*
wnnx - WGD - 0.00416T

or, by substituting expression (3) for D and assuming » = 0.3,

qoat!
Wmax = 0.0454 T
This result is about 2} per cent in error (see Table 8).

From expression (132) it may be seen that the deflections of two plates
that have the same thickness and the same value of the ratio a/b increase
as the fourth power of the length of the sides.

The expressions for bending and twisting moments can be obtained
from the general solution (131) by using Eqgs. (101) and (102). The
series obtained in this way are not so rapidly convergent as series (131),
and in the further discussion (see Art. 30) another form of solution will be
given, more suitable for numerical calculations. Since the moments are
expressed by the second derivatives of series (131), their maximum values,
if we keep ¢qo and D the same, are proportional to the square of linear
dimensions. Since the total load on the plate, equal to geab, is also pro-
portional to the square of the linear dimensions, we conclude that, for
two plates of equal thickness and of the same value of the ratio a/b, the
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maximum bending moments and hence the maximum stresses are equal
if the total loads on the two plates are equal.!

29. Further Applications of the Navier Solution. From the discussion
in the preceding article it is seen that the deflection of a simply supported
rectangular plate (Fig. 59) can always be represented in the form of a
double trigonometric series (130), the coefficients a,, being given by
Eq. (129).

Let us apply this result in the case of a single load P uniformly dis-
tributed over the area of the rectangle shown in Fig. 61. By virtue of
Eq. (129) we have

vz b2 mre
= sin _1r sin —~ nry dx dy
abuv f—u/2 Jn—v/2 b

or Upn = 16P sin mré sin T gin 7% gin nmv (a)
T wtmnuy a b 2a 2b

If, in particular, £ = a/2,9 = b/2, 4 = a, and
v = b, Eq. (a) yields the expression (¢) obtained
in Art. 28 for the uniformly loaded plate. ke~ U =]

Another case of practical interest is a single ;.
load concentrated at any given pointz = £,y = g v
of the plate. Using Eq. (a) and letting » and v r
tend to zero we arrive at the expression - ¢ —->)

[ e = o3 e m ]

4P mrf . nwy

Gmn = 7 sin —— 5 sin—= ®) g

and, by Eq. (130), at the deflection

w mrk nwy
sin — sin —
4P a b . mwrx . nmy

—_ — 5 sin — sin —~*
wiabD m?  n2\? a b
m=1 n=1 a? + b2

The series converges rapidly, and we can obtain the deflection at any
point of the plate with sufficient accuracy by taking only the first few
terms of the series. Let us, for example, calculate the deflection at the
middle when the load is applied at the middle as well. Then we have
(=2 =a/2, 7 =y = b/2, and the series (133) yields

Fic. 61

(133)

4P 1

= x'abD Tt A\t
m=1 n=1 (a_2 + F)

1 This conclusion was established by Mariotte in the paper ‘“Traité du mouvement
des eaux,” published in 1686. See Mariotte’s scientific papers, new ed., vol. 2, p. 467,
1740.
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