CHAPTER 4

SMALL DEFLECTIONS OF LATERALLY LOADED PLATES

21. The Differential Equation of the Deflection Surface. We assume
that the load acting on a plate is normal to its surface and that the
deflections are small in comparison with the thickness of the plate (see
Art. 13). At the boundary we assume that the edges of the plate are
free to move in the plane of the plate; thus the reactive forces at the
edges are normal to the plate. With these assumptions we can neglect
any strain in the middle plane of the plate during bending. Taking, as
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before (see Art. 10), the coordinate axes z and y in the middle plane of
the plate and the z axis perpendicular to that plane, let us consider an
element cut out of the plate by two pairs of planes parallel to the zz and
yz planes, as shown in Fig. 47. In addition to the bending moments M.
and M, and the twisting moments M, which were considered in the pure
bending of a plate (see Art. 10), there are vertical shearing forces! acting
on the sides of the element. The magnitudes of these shearing forces
per unit length parallel to the y and z axes we denote by @. and @Q,,
respectively, so that
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Since the moments and the shearing forces are functions of the coordi-
nates z and y, we must, in discussing the conditions of equilibrium of the
element, take into consideration the small changes of these quantities
when the coordinates x and y change by the small quantities dz and dy.

t There will be no horizontal shearing forces and no forces normal to the sides of the

element, since the strain of the middle plane of the plate is assumed negligible.
79
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The middle plane of the element is represented in Fig. 48a and b, and the
directions in which the moments and forces are taken as positive are
indicated.

We must also consider the load distributed over the upper surface of
the plate. The intensity of this load we denote by ¢, so that the load
acting on the element! is ¢ dz dy.
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Projecting all the forces acting on the element onto the z axis we obtain
the following equation of equilibrium:

and dy+aQ”dydz+qudy =0

from which
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Taking moments of all the forces acting on the element with respect to
the z axis, we obtain the equation of equilibrium

aM., oM, _
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! Bince the stress component o, is neglected, we actually are not able to apply the
load on the upper or onthe lower surface of the plate. Thus, every transverse single
load considered in the thin-plate theory is merely a discontinuity in the magnitude of
the shearing forces, which vary according to the parabolic law through the thickness
of the plate. Likewise, the weight of the plate can be included in the load ¢ without
affecting the accuracy of the result. If the effect of the surface load becomes of
special interest, thick-plate theory has to be used (see Art. 19).
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The moment of the load g and the moment due to change in the force @,
are neglected in this equation, since they are small quantities of a higher
order than those retained. After simplification, Eq. (b) becomes

oM., oM, _
oz *@— +Q, =0 ©
In the same manner, by taking moments with respect to the y axis, we
obtain

M, , M,

Yy +6x

- Q=0 (d)

Since there are no forces in the z and y directions and no moments
with respect to the 2 axis, the three equations (99), (¢), and (d) com-
pletely define the equilibrium of the element. Let us eliminate the
shearing forces Q. and @, from these equations by determining them from
Eqgs. (¢) and (d) and substituting into Eq. (99). In this manner we obtain

M, , *M,. | °M, M. _
ot T o 3y + oyt ooy ¢

(e)

Observing that M,. = —M,,, by virtue of r,, = 7., we finally represent
the equation of equilibrium (¢) in the following form:
#»M, M, M.,

a7 T oy " 2azay - ¢

(100)

To represent this equation in terms of the deflections w of the plate,
we make the assumption here that expressions (41) and (43), developed
for the case of pure bending, can be used also in the case of laterally
loaded plates. This assumption is equivalent to neglecting the effect on
bending of the shearing forces Q. and @, and the compressive stress o,
produced by the load ¢. We have already used such an assumption in
the previous chapter and have seen that the errors in deflections obtained
in this way are small provided the thickness of the plate is small in com-
parison with the dimensions of the plate in its plane. An approximate
theory of bending of thin elastic plates, taking into account the effect of
shearing forces on the deformation, will be given in Art. 39, and several
examples of exact solutions of bending problems of plates will be dis-
cussed in Art. 26.

Using 2 and y directions instead of n and ¢, which were used in Eqgs.
(41) and (43), we obtain

— _pnf%w 9w _ 9w %w
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Substituting these expressions in Eq. (100), we obtain!

tw dtw F*w _ g
Eys + 2 3% ay? + E)) (103)
This latter equation can also be written in the symbolic form
saw =L (104)
D
w . w
where Aw = s + 3 (105)

It is seen that the problem of bending of plates by a lateral load ¢
reduces to the integration of Eq. (103). If, for a particular case, a solu-
tion of this equation is found that satisfies the conditions at the bounda-
ries of the plate, the bending and twisting moments can be calculated
from Egs. (101) and (102). The corresponding normal and shearing
stresses are found from Eq. (44) and the expression

6M.
(T.ru) max — h 22”

Equations (¢) and (d) are used to determine the shearing forces Q. and
Q,, from which

_ My M, 3 [(Pw | dw
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_OM, M., _ 9 (d*w 3w
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or, using the symbolic form,
a 5]
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The shearing stresses 7. and 7,, can now be determined by assuming
that they are distributed across the thickness of the plate according to
the parabolic law.? Then

_34,
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1 This equation was obtained by Lagrange in 1811, when he was examining the
memoir presented to the French Academy of Science by Sophie Germain. The
history of the development of this equation is given in I. Todhunter and K. Pearson,
‘“History of the Theory of Elasticity,” vol. 1, pp. 147, 247, 348, and vol. 2, part 1, p.
263. See also the note by Saint Venant to Art. 73 on page 689 of the French transla-
tion of “Théorie de I'élasticité des corps solides,” by Clebsch, Paris, 1883.

2Tt will be shown in Art. 26 that in certain cases this assumption is in agreement
with the exact theory of bending of plates.
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It is seen that the stresses in a plate can be calculated provided the
deflection surface for a given load distribution and for given boundary
conditions is determined by integration of Eq. (103).

22. Boundary Conditions. We begin the discussion of boundary con-
ditions with the case of a rectangular plate and assume that the z and
y axes are taken parallel to the sides of the plate.

Bugilt-in Edge. If the edge of a plate is built in, the deflection along
this edge is zero, and the tangent plane to the deflected middle surface
along this edge coincides with the initial position of the middle plane of
the plate. Assuming the built-in edge to be given by z = a, the bound-
ary conditions are

aw
(@W)ee = 0 (6—%)== -0 (109)

Simply Supported Edge. If the edge z = a of the plate is simply sup-
ported, the deflection w along this edge must be zero. At the same time
this edge can rotate freely with respect to the edge line; 7.e., there are no

bending moments M, along this edge. This

kind of support is represented in Fig. 49. The
analytical expressions for the boundary condi-
//A,

\

tions in this case are
A

92 92
(W)oa = 0 (% + @l")= -0 (110)

FiG. 49

Observing that %w/8y* must vanish together with w along the rectilinear
edge = = a, we find that the second of the conditions (110) can be
rewritten as 8%w/dx® = 0 or also Aw = 0. Equations (110) are there-
fore equivalent to the equations

(Wema =0 (AW)gua = 0 (111)

which do not involve Poisson’s ratio ».

Free Edge. If an edge of a plate, say the edge z = a (Fig. 50), is
entirely free, it is natural to assume that along this edge there are no
bending and twisting moments and also no vertical shearing forces, 7.e.,
that

(MZ)z-a =0 (]”zy)z=a =0 (Qx)x=a =0

The boundary eonditions for a free edge were expressed by Poisson! in
this form. But later on, Kirchhoff? proved that three boundary con-
ditions are too many and that two conditions are sufficient for the com-
plete determination of the deflections w satisfying Eq. (103). He showed

! Bee the discussion of this subject in Todhunter and Pearson, op. cit., vol. 1, p. 250,
and in Saint Venant, loc. cit.

t See J. Crelle, vol. 40, p. 51, 1850.
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also that the two requirements of Poisson dealing with the twisting
moment M., and with the shearing force Q. must be replaced by one
boundary condition. The physical significance of this reduction in the
number of boundary conditions has been explained by Kelvin and Tait.!
These authors point out that the bending of a plate will not be changed
if the horizontal forces giving the twisting couple M., dy acting on an
element of the length dy of the edge x = a are replaced by two vertical
forces of magnitude M., and dy apart, as shown in Fig. 50. Such a
replacement does not change the magnitude of twisting moments and
produces only local changes in the stress distribution at the edge of the
plate, leaving the stress condition of the rest of the plate unchanged.

We have already discussed a par-
Mxy

o0t -], M ticular case of such a transforma-

. ,/”- {1 ":(xy + aa_yx‘ydy tion of the boundary force system

o S—— in considering pure bending of a

s . . plate to an anticlastic surface (see

4 4 Art. 11). Proceeding with the

= Mxy foregoing replacement of twisting

y T Mxy + %"g’—‘l dy couples along the edge of the plate
Fic. 50 and considering two adjacent ele-

ments of the edge (Fig. 50), we
find that the distribution of twisting moments M., is statically equiva-
lent to a distribution of shearing forces of the intensity

;. [M4y
Qz - < ay )z-:a

Hence the joint requirement regarding twisting moment M., and shear-
ing force Q. along the free edge * = a becomes

v, - (Qz - %‘i—)_ -0 @

Substituting for Q. and M, their expressions (106) and (102), we finally
obtain for a free edge * = a:

l 9w dw l
F(2 ~ =0 2
dx® ( ) 92 9Y? |oca (112)

The condition that bending moments along the free edge are zero requires

9%w 9w
(5? + 37),_ =0 (113)

t See “Treatise of Natural Philosophy,” vol. 1, part 2, p. 188, 1883. Independ-
ently the same question was explained by Boussinesq, J. Maih., ser. 2, vol. 16, pp.
125-274, 1871: ser. 3, vol. 5, pp. 329-344, Paris, 1879.
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Equations (112) and (113) represent the two necessary boundary con-
ditions along the free edge z = a of the plate.

Transforming the twisting couples as explained in the foregoing dis-
cussion and as shown in Fig. 50, we obtain not only shearing forces Q. dis-
tributed along the edge x = a but

also two concentrated forces at the ,1- ....... O —erenev Mxydiz oy =0
ends of that edge, as indicated in b x
Fig.51. The magnitudes of these £~ (Myx)

x=o;y=b

forces are equal to the magnitudes
of the twisting couple! M., at the y My o yeb Mxy) _, y=b
corresponding corners of the plate.
Making the analogous transforma-
tion of twisting couples M, along the edge ¥ = b, we shall find that in
this case again, in addition to the distributed shearing forces @, there
will be concentrated forces M, at the corners. This indicates that a
rectangular plate supported in some way along the edges and loaded
laterally will usually produce not only reactions distributed along the
boundary but also concentrated reactions at the corners.

Regarding the directions of these concentrated reactions, a conclusion
can be drawn if the general shape of the deflection surface is known.
Take, for example, a uniformly loaded square plate simply supported
along the edges. The general shape of the deflection surface is indicated
in Fig. 52a by dashed lines representing the section of the middle surface

of the plate by planes parallel to the zz

,i‘------- a------- v' and yz coordinate planes. Considering
Ky % these lines, it may be seen that near the
T corner A the derivative dw/dz, repre-
senting the slope of the deflection sur-
Y ? (@) face in the z direction, is negative and
decreases numerically with increasing y.
R R Hence 8%w/dz dy is positive at the cor-

A ner A. From Eq. (102) we conclude

R (b R that M., is positive and M, is negative
at that corner. From this and from

the directions of M,, and M,. in Pig.

48a it follows that both concentrated forces, indicated at the point x = a,
y = bin Fig. 51, have a downward direction. From symmetry we conclude
also that the forces have the same magnitude and direction at all corners
of the plate. Hence the conditions are as indicated in Fig. 52b, in which

Fic. 51

Fic. 52

62
R = 2(Ma)emayma = 2D(1 = %) <5§%)§>
=@, ym=a

L The couple M., is a moment per unit length and has the dimension of a force.
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It can be seen that, when a square plate is uniformly loaded, the
corners in general have a tendency to rise, and this is prevented by the
concentrated reactions at the corners, as indicated in the figure.
T S Elastically Supported and Elasti-

’1 cally Built-in Edge. Iftheedgexz = a

x of arectangular plate is rigidly joined

/ to a supporting beam (Fig. 53), the

£ deflection along this edge is not zero

and is equal to the deflection of the

Fic. 53 beam. Also, rotation of the edge is

equal to the twisting of the beam.

Let B be the flexural and C the torsional rigidity of the beam. The pres-

sure in the 2 direction transmitted from the plate to the supporting beam,
from Eq. (a), is

_ (g M\ _pofdw 0w
v (0=t R e )L

and the differential equation of the deflection curve of the beam is

dw 8 Tow ow
B (W)M =D [5? +2-» 5y_2],=a (114)

This equation represents one of the two boundary conditions of the plate
along the edge z = a.

To obtain the second condition, the twisting of the beam should be
considered. The angle of rotation! of any cross section of the beam is
— (0w/9x) 2ma, and the rate of change of this an-
gle along the edge is

_ 2w
0% Y Jrma

Hence the twisting moment in the beam is
—C(8*w/0x 3Y)s=s. This moment varies along ¥
the edge, since the plate, rigidly connected with
the beam, transmits continuously distributed
twisting moments to the beam. The magni-
tude of these applied moments per unit length Fie. 54

is equal and opposite to the bending moments

M in the plate. IHence, from a consideration of the rotational equilib-
rium of an element of the beam, we obtain

a [ w
._.CI 3—y<a—‘—x ay>z_a - _(Mz):—a

! The right-hand-screw rule is used for the sign of the angle.
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or, substituting for M, its expression (101),

a [ o*w a2 2w
—C @(a—x 6y>,=a =D (5; + @L (115)

This is the second boundary condition at the edge = a of the plate.

In the case of a plate with a curvilinear boundary (Fig. 54), we take
at a point A of the edge the coordinate axes in the direction of the
tangent ¢{ and the normal »n as shown in the figure. The bending and
twisting moments at that point are

h/2 h/2
M, =f wonde M = —f
—h/2 —h/2

2Tnt dz (b)

Using for the stress components o, and 7., the known expressions?!

o: c0s? a + oy 8in? o + 27, SIn @ €OS @
T2y(c08? @ — sin? &) + (o, — ;) sin « coS «

On

Tat
we can represent expressions (b) in the following form:

M, = M,cos?a+ M, sin? a — 2M,, sin « cos a

M. = M.,(cos? @« — sin? a) + (M, — M,) sin a cos a (e)

The shearing force @, at point A of the boundary will be found from the
equation of equilibrium of an element of the plate shown in Fig. 54b,
from which

Qnds = dey - dex
or Q. = Qs cos & + Q, sin « (d)

Having expressions (¢) and (d), the boundary condition in each particular
case can be written without difficulty.
If the curvilinear edge of the plate is built in, we have for such an edge

ow
w=0 = 0 (e)
In the case of a simply supported edge we have
w=0 M,=0 )]

Substituting for M, its expression from the first of equations (¢) and
using Egs. (101) and (102), we can represent the boundary conditions (f)
in terms of w and its derivatives.

If the edge of a plate is free, the boundary conditions are

oM.,
Ma=0 Vi=Q.——52=0 @)

! The z and y directions are not the principal directions as in the case of pure bend-
ing; hence the expressions for M, and M, will be different from those given by Eqs.
(39) and (40)
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where the term —dM,,/ds is obtained in the manner shown in Fig. 50
and represents the portion of the edge reaction which is due to the dis-
tribution along the edge of the twisting moment M,. Substituting
expressions (¢) and (d) for M,, M., and @, and using Egs. (101), (102),
(106), and (107), we can represent boundary conditions (g) in the follow-
ing form:

2 2
vAw+(1—u)<cos"aa—+sm o — +sm2aa 8y>=0

dx?
cos o 9 Aw 4+ sin a 9 Aw -+ (I — ») = [cos 200 —— o (116)
ox dy dz dy
2 2
+%sin %(3&7— gg)] =0
where, as before,
Aw = o &U
dx? y?

Another method of derivation of these conditions will be shown in the
next article.

23. Alternative Method of Derivation of the Boundary Conditions. The differential
equation (104) of the deflection surface of a plate and the boundary conditions can be
obtained by using the principle of virtual displacements together with the expression
for the strain energy of a bent plate.! Since the effect of shearing stress on the defiec-
tions was entirely neglected in the derivation of Eq. (104), the corresponding expres-
sion for the strain energy will contain only terms depending on the action of bending
and twisting moments as in the case of pure bending discussed in Art. 12. Using
Eq. (48) we obtain for the strain energy in an infinitesimal element

1 0w  Jww Sk M e \?
dV==D{l—+—) — 201 — — - 1z d;
2 !((m’ + f')y2) ( ) [ax’ ay? (az ay) :H i (@

The total strain energy of the plate is then obtained by integration as follows:

a a 2 2, N ” 2
V= —D o L BN g o,y | S (oW dedy (117)
3zt 0;/2 az? ay? dxr dy

where the integration is extended over the entire surface of the plate.

Applying the principle of virtual displacements, we agssume that an infinitely small
variation &w of the deflections w of the plate is produced. Then the corresponding
change in the strain energy of the plate must be equal to the work done by the external
forces during the assumed virtual displacement. In calculating this work we must
consider not only the lateral load ¢ distributed over the surface of the plate but also
the bending moments M, and transverse forces Q. — (8M,;/3s) distributed along the
boundary of the plate. Hence the general equation, given by the principle.of virtual
displacements, is

1 This is the method by which the boundary conditions were satisfactorily estab-
lished for the first time; see G. Kirchhoff in J. Crelle, vol. 40, 1850, and also his
Vorlesungen iiber Mathematische Physik, Mechanik, p. 450, 1877. Lord Kelvin took
an interest in Kirchhoff’s derivations and spoke with Helmholtz about them; see the
biography of Kelvin by Sylvanus Thompson, vol. 1, p. 432.



