CHAPTER 2

PURE BENDING OF PLATES

9. Slope and Curvature of Slightly Bent Plates. In discussing small
deflections of a plate we take the middle plane of the plate, before bend-
ing occurs, as the zy plane. During bending, the particles that were in
the zy plane undergo small displacements w perpendicular to the zy plane
and form the middle surface of the plate. These displacements of the
middle surface are called deflections of a plate in our further discussion.
Taking a normal section of the plate parallel
to the "zz plane (Fig. 16a), we find that the /r‘r@f";—‘;u?—"‘
slope of the middle surface in the z direction 1N

. Y v dw
ist, = dw/dz. . In the same manner the slope l \'\J‘,L
in the y direction is 7, = dw/dy. Taking ]
. . . . m z (a)
now any direction an in the zy plane (Fig. 0
16b) making an angle « with the z axis, we find x
that the difference in the deflections of the two dx
adjacent points a and a, in the an direction is m o P
%4 N
dw ow X\
= ow ow )
dw e dz + 3y dy n
y (b
and that the corresponding slope is Fic. 16
ow _odwdr | dwdy _ dw dw .
on  drdn ' dydn oz cosa+6ysma (@)

To find the direction a; for which the slope is a maximum we equate to
zero the derivative with respect to a of expression (a) In this way we
obtain

ow fow

tan ay = —a‘g 5; (b)

Substituting the corresponding values of sin «; and cos «; in (a), we obtain
for the maximum slope the expression

/ 6w> \/ aw)2 (aw>’
). =G + (G ©
By setting expression (@) equal to zero we obtain the direction for which
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34 THEORY OF PLATES AND SHELLS

the slope of the surface is zero. The corresponding angle a, is deter-
mined from the equation

dw /ow
tanaz——a—x/@ (d)
From Egs. (b) and (d) we conclude that

tan «; tan as = —1

which shows that the directions of zero slope and of maximum slope are
perpendicular to each other.

In determining the curvature of the middle surface of the plate we
observe that the deflections of the plate are very small. In such a case
the slope of the surface in any direction can be taken equal to the angle
that the tangent to the surface in that direction makes with the zy plane,
and the square of the slope may be neglected compared to unity. The
curvature of the surface in a plane parallel to the zz plane (Fig. 16) is
then numerically equal to

L_ o (m)_ _ow ©
e dx\dzr /) dx?
We consider a curvature positive if it is convex downward. The minus
sign is taken in Eq. (e), since for the deflection convex downward, as

shown in the figure, the second derivative 8*w/dz? is negative.
In the same manner we obtain for the curvature in a plane parallel to

the yz plane
1 9 [ow w
Fe ) ?

These expressions are similar to those used in discussing the curvature
of a bent beam.

In considering the curvature of the middle surface in any direction an
(Fig. 16) we obtain

1__ 9 (ow
r.  On\9n
Substituting expression (a) for dw/dn and observing that
a a aJa .
In —acosa+@sma
we find
1 2 a . ow ow .
"= -—(—a—xcos:x+5§sma)(a cos«x+£sma>
_ 2w . iw . ?tw .,
= (6:1:2 cos?a + 2 3z 9y sin « ¢os a + 3 sin a)
_1 2 1 . 1.,
= cos? a - sin 2 + r sin? a (9
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It is seen that the curvature in any direction » at a point of the middle
surface can be calculated if we know at that point the curvatures

1__ow 1 _ ow
r» 0zt 1, 9y
and the quantity
1 w
T OOy (h)

which is called the twist of the surface with respect to the x and y axes.
If instead of the direction an (Fig. 16b) we take the direction af per-

pendicular to an, the curvature in this new direction will be obtained from

expression (g) by substituting /2 + « for . Thus we obtain

1., 1 . | R .
oy sin? o + " sin 2« + r,, cos? & @)

Adding expressions (g) and (z), we find

1 1 1,1
RtRTn T @9
which shows that at any point of the middle surface the sum of the
curvatures in two perpendicular directions such as n and ¢ is independent
of the angle . This sum is usually called the average curvature of the
surface at a point.
The twist of the surface at a with respect to the an and at directions is

1 d(dv
rne  dt\dn

In calculating the derivative with respect to ¢, we observe that the
direction at is perpendicular to an. Thus we obtain the required deriva-
tive by substituting 7/2 + « for « in Eq. (¢). In this manner we find

1 d 9 . ow . ow
-——<—cosa+5-?;sma><—-&-sma+-@cosa)

1. 2w | dw o%w
-—§sm2a<——a72+a—y2)+cos2am

1. 1 1 1 .
= g sin 2a<E——r—u)+cos 2aa )]

In our further discussion we shall be interested in finding in terms of «
the directions in which the curvature of the surface is a maximum or a
minimum and in finding the corresponding values of the curvature. We
obtain the necessary equation for determining « by equating the deriva-
tive of expression (g) with respect to a to zero, which gives

1. 2 1. o,
Esm2a+;—cos2a—;sm2a—0 &)

2y v
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whence
2

tan 2a = — ~ITL1' (35)

Tz Ty

I'rom this equation we find two values of «, differing by /2. Substitut-
ing these in Eq. (g) we find two values of 1/r,, one representing the
maximum and the other the minimum curvature at a point a of the sur-
face. These two curvatures are called the principal curvatures of the
surface; and the corresponding planes naz and faz, the principal planes of
curvature.

Observing that the left-hand side of Eq. (k) is equal to the doubled
value of expression (j), we conclude that, if the directions an and at (Fig.
16) are in the principal planes, the corresponding twist 1/r,; is equal to
zZero.

We can use a circle, similar to Mohr’s circle representing combined
stresses, to show how the curvature and the twist of a surface vary with
the angle a.* To simplify the discussion we assume that the coordinate
planes xz and yz are taken parallel to the principal planes of curvature
at the point a. Then

1

Tzy
i

Tn  and we obtain from Eqs. (g) and (5)
for any angle «

A l=—lcoszaf+—lsin2a
1 Ta Tz Ty (36)
nt o D gnoa
Fia. 17 e 2\rs: wa

Taking the curvatures as abscissas and the twists as ordinates and con-
structing a circle on the diameter 1/r, — 1/r,, as shown in Fig. 17, we see
that the point A defined by the angle 2« has the abscissa

—_ = — 1/1 1 1/1 1 P
OB OC+CB—§<E+;;)+§<E—;”)0%2¢1

1 1 .
= costa + — sin? a
Te ry

and the ordinate
-_— 1/1 1\ .
AB == — —)sin 2a
2\r. 1,
Comparing these results with formulas (36), we conclude that the coordi-
* See 8. Timoshenko, ‘‘Strength of Materials,” part I, 3d ed., p. 40, 1955.
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nates of the point A define the curvature and the twist of the surface for
any value of the angle o. It is seen that the maximum twist, represented
by the radius of the circle, takes place when a = /4, i.c., when we take
two perpendicular directions bisecting the angles between the principal
planes.

In our example the curvature in any direction is positive; hence the
surface is bent convex downward. If the curvatures 1/r, and 1/r, are
both negative, the curvature in any direction is also negative, and we have
a bending of the plate convex upward. Surfaces in which the curvatures
in all planes have like signs are called synclastic. Sometimes we shall
deal with surfaces in which the two principal curvatures have opposite
signs. A saddle is a good example. Such surfaces are called anticlastic.
The circle in Fig. 18 represents a particular case of such surfaces when

My
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Fic. 18 Fig. 19
1/r, = —1/r,. It is seen that in this case the curvature becomes zero

for @« = x/4 and for @ = 3x/4, and the twist becomes equal to +1/r..
10. Relations between Bending Moments and Curvature in Pure
Bending of Plates. In the case of pure bending of prismatic bars a
rigorous solution for stress distribution is obtained by assuming that
cross sections of the bar remain plane during bending and rotate only
with respect to their neutral axes so as to be always normal to the deflec-
tion curve. Combination of such bending in two perpendicular directions
brings us to pure bending of plates. Let us begin with pure bending of a
rectangular plate by moments that are uniformly distributed along the
edges of the plate, as shown in Fig. 19. We take the xy plane to coincide
with the middle plane of the plate before deflection and the x and y axes
along the edges of the plate as shown. The z axis, which is then per-
pendicular to the middle plane, is taken positive downward. We denote
by M, the bending moment per unit length acting on the edges parallel
to the y axis and by M, the moment per unit length acting on the edges
parallel to the z axis. These moments we consider positive when they
are directed as shown in the figure, 7.e., when they produce compression
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in the upper surface of the plate and tension in the lower. The thickness
of the plate we denote, as before, by k and consider it small in comparison
with other dimensions.

Let us consider an element cut out of the plate by two pairs of planes
parallel to the zz and yz planes, as shown in Fig. 20. Since the case shown
in Fig. 19 represents the combination of two uniform bendings, the stress
conditions are identical in all elements, as shown in Fig. 20, and we have

a uniform bending of the plate. Assuming
~%o-mdx--—>  that during bending of the plate the lateral

d*y,_/v : sides of the element remain plane and rotate

2 about the neutral axes nn so as to remain nor-

2 ¢ mal to the deflected middle surface of the

in A plate, it can be concluded that the middle

z 2 plane of the plate does not undergo any ex-
L o i NS

tension during this bending, and the middle
surface is therefore the neutral surface.! Let
1/r, and 1/r, denote, as before, the curva-
tures of this neutral surface in sections parallel to the xz and yz planes,
respectively. Then the unit elongations in the x and y directions of an
elemental lamina abed (Fig. 20), at a distance z from the neutral surface,
are found, as in the case of a beam, and are equal to

z z
€z=;; €y =7‘_v (@)

Using now Hooke’s law [Eq. (1), page 5], the corresponding stresses in

the lamina abed are
Ez 1 1
1 —? (7: t E)

(®)
o) = _Ez_(_lJ” 1)

1 —»\r, Tz

G =

These stresses are proportional to the distance z of the lamina abed from
the neutral surface and depend on the magnitude of the curvatures of the
bent plate.

The normal stresses distributed over the lateral sides of the element in
Fig. 20 can be reduced to couples, the magnitudes of which per unit
length evidently must be equal to the external moments M and M,. In
this way we obtain the equations

h/2

[, o dydz = M. dy
e ©
h/2

[ o2dzdz = M, dz
—h/2

1Tt will be shown in Art. 13 that this conclusion is accurate enough if the deflections
of the plate are small in comparison with the thickness A.
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Substituting expressions (b) for ¢, and ¢, we obtain

1 1 o%w w
1 1 %w 9w
My—D<E+VE>——D<a—Z/2+Vw> (38)

where D is the flexural rigidity of the plate defined by Eq. (3), and w
denotes small deflections of the plate in the z direction.

Let us now consider the stresses acting on a section of the lamina
abed parallel to the z axis and inclined to the z and y axes. If acd (Fig. 21)
represents a portion of the lamina cut by such a section, the stress acting
on the side ac can be found by means of the equations of statics. Resolv-
ing this stress into a normal component ¢, and a shearing component 7,

b3
’< -------- dxX —mm e
Oy
e 1
3
]
H
dy ™ feoe
i‘ Tt g
s Mt
M, n
(a}
Fie. 21

the magnitudes of these components are obtained by projecting the forces
acting on the element acd on the n and ¢ directions respectively, which
gives the known equations

o, = 0y €082 a + ¢, sin? «

3oy — 0,) sin 2

@

Il

Tnt

in which « is the angle between the normal n and the r axis or between
the direction ¢ and the y axis (Fig. 21a). The angle is considered positive
if measured in a clockwise direction.

Considering all laminas, such as acd in Fig. 21b, over the thickness of
the plate, the normal stresses o, give the bending moment acting on the
section ac of the plate, the magnitude of which per unit length along ac
is

M, = /_h:; o2dz = M. cos?a + M, sin? « (39)

The shearing stresses r,; give the twisting moment acting on the section
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ac of the plate, the magnitude of which per unit length of ac is
My = = [1% ruzde = g sin 2a(M. — M) (40)

The signs of M, and M, are chosen in such a manner that the positive
values of these moments are represented by vectors in the positive direc-
tions of n and ¢ (Fig. 21a) if the rule of the right-hand screw is used.
When « is zero or =, Eq. (39) gives M,, = M,. Fora = v/2 or 3n/2, we
obtain M, = M,. The moments M,, become
zero for these values of @. Thus we obtain
the conditions shown in Fig. 19.

My Equations (39) and (40) are similar to Eqs.

Y (36), and by using them the bending and
l twisting moments can be readily calculated

Mo / for any value of @. We can also use the

graphical method for the same purpose and
find the values of M, and M, from Mohr’s
circle, which can be constructed as shown in the previous article by tak-
ing M, as abscissa and M, as ordinate. The diameter of the circle will
be equal to M, — M,, as shown in Fig. 22. Then the coordinates OB and
AB of a point A, defined by the angle 2«, give the moments M, and M.,
respectively.

Let us now represent M, and M,, as functions of the curvatures and
twist of the middle surface of the plate. Substituting in Eq. (39) for
M. and M, their expressions (37) and (38), we find

Fic. 22

M, = D(—l cos? a + 1 sin? a) + D (—1 sin? o + 1 cos? a)

s Ty 7z Ty
Using the first of the equations (36) of the previous article, we conclude
that the expressions in parentheses represent the curvatures of the middle
surface in the n and ¢ directions respectively. Hence

1 1 w 9w

To obtain the corresponding expression for the twisting moment M,,,
let us consider the distortion of a thin lamina abed with the sides ab and
ad parallel to the n and ¢ directions and at a distance z from the middle
plane (Fig. 23). During bending of the plate the points @, b, ¢, and d
undergo small displacements. The components of the displacement of
the point @ in the n and ¢ directions we denote by u and » respectively.
Then the displacement of the adjacent point d in the n direction is
u + (du/dt) di, and the displacement of the point b in the ¢ direction is
v 4+ (8v/9n) dn. Owing to these displacements, we obtain for the shear-
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ing strain
ou 0
Tt = oy + n (e)
The corresponding shearing stress is
du ov
=G (G *)

From Fig. 23b, representing the section of the middle surface made by
the normal plane through the » axis, it may be seen that the angle of
rotation in the counterclockwise direction of an element pg, which
initially was perpendicular to the zy plane, about an axis perpendicular
to the nz plane is equal to —dw/dn. Owing to this rotation a point of the

x
\“/4 . .n
4 /\\\ % . q. _Q_w.
X /Y R _on
/b /40 vV S b
. 7 // n n
L~ b “ (b)
.‘/ \| l«)‘ Q"
Y A
’
y uvllat
(a) ©
Fia. 23

element at a distance z from the neutral surface has a displacement in the
n direction equal to
U = —z %

Considering the normal section through the ¢ axis, it can be shown that
the same point has a displacement in the ¢ direction equal to

p = —z ¥
at

Substituting these values of the displacements « and v in expression (f),
we find
*w

Tat = —2GZ bn—at (42)
and expression (40) for the twisting moment becomes
h/2 Gh3 9w 92w
ﬂ[nt = - /—h/21'ntz dz = —6— aT'a—t = D(l - V)aTa—t (43)
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It is seen that the twisting moment for the given perpendicular directions
n and ¢ is proportional to the twist of the middle surface corresponding to
those directions. When the n and ¢ directions coincide with the z and
y axes, there are only bending moments M. and M, acting on the sections
perpendicular to those axes (Fig. 19). Hence the corresponding twist is
zero, and the curvatures 1/r, and 1/7, are the principal curvatures of the
middle surface of the plate. They can readily be calculated from
Eqgs. (37) and (38) if the bending moments M, and M, are given. The
curvature in any other direction, defined by an angle «, can then be
calculated by using the first of the equations (36), or it can be taken from
Fig. 17.

Regarding the stresses in a plate undergoing pure bending, it can be
concluded from the first of the equations (d) that the maximum normal
stress acts on those sections parallel to the zz or yz planes. The magni-
tudes of these stresses are obtained from Eqs. (b) by substitutingz = h/2
and by using Eqgs. (37) and (38). In this way we find

6M. 6
(0';) max — 7e (o'y) max = he Y (44)

If these stresses are of opposite sign, the maximum shearing stress acts in
the plane bisecting the angle between the 2z and yz planes and is equal to

1 (M. - M
Tmax = § (Uz - a'y) = —(—h—z—”)' (45)

If the stresses (44) are of the same sign, the maximum shear acts in the
plane bisecting the angle between the zy and xzz planes or in that bisecting
the angle between the zy and yz planes and is equal t0 4(6})max OF 3(02) max,
depending on which of the two principal stresses (0y)msx OF (02)max 18
greater.

11, Particular Cases of Pure Bending. In the discussion of the previ-
ous article we started with the case of a rectangular plate with uniformly
distributed bending moments acting along the edges. To obtain a gen-
eral case of pure bending of a plate, let us imagine that a portion of any
shape is cut out from the plate considered above (Fig. 19) by a cylindrical
or prismatic surface perpendicular to the plate. The conditions of bend-
ing of this portion will remain unchanged provided that bending and
twisting moments that satisfy Eqs. (39) and (40) are distributed along the
boundary of the isolated portion of the plate. Thus we arrive at the
case of pure bending of a plate of any shape, and we conclude that pure
bending is always produced if along the edges of the plate bending
moments M, and twisting moments M, are distributed in the manner
given by Eqgs. (39) and (40).

Let us take, as a first example, the particular case in which

M.=M,=M
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It can be concluded, from Egs. (39) and (40), that in this case, for a plate
of any shape, the bending moments are uniformly distributed along the
entire boundary and the twisting moments vanish. From Egs. (37) and
(38) we conclude that

P . - (46)

i.e., the plate in this case is bent to a spherical surface the curvature of
which is given by Eq. (46).
In the general case, when M, is different from M,, we put

Mz = M1 and M,, = Mz
Then, from Eqgs. (37) and (38), we find
0w M1 et IIMz

at . DU — )
6_’1_0 _ M2 bl VMl (a)
3y DU — )
and in addition
2w
dx dy 0 )

Integrating these equations, we find

Ml—VMz M?""VM]
“a=-m* A=Y Tty ©

where C,, C,;, and C; are constants of integration. These constants
define the plane from which the deflections w are measured. If this
plane is taken tangent to the middle surface of the plate at the origin,
the constants of integration must be equal to zero, and the deflection
surface is given by the equation

Ml—ng 9 Mg—le

w =

= -— _— 2
Y= —spa =% Tapa =Y )
In the particular case where M, = M, = M, we get from Eq. (d)
- M@+ y)
Y= = SDAF Y (e)

i.e., a paraboloid of revolution instead of the spherical surface given by
Eq. (46). The inconsistency of these results arises merely from the use
of the approximate expressions d2w/dz? and d%w/dy? for the curvatures
1/r, and 1/r, in deriving Eq. (¢). These second derivatives of the
deflections, rather than the exact expressions for the curvatures, will be
used also in all fuirther considerations, in accordance with the assump-
tions made in Art. 9. This procedure greatly simplifies the fundamental
equations of the theory of plates.
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Returning now to Eq. (d), let us put M, = —M,. In this case the
principal curvatures, from Eqgs. (a), are

1__1_ _ow_ M
Pl e T ) 0
and we obtain an anticlastic surface the equation of which is
= - .____M_l___ 2 92

Straight lines parallel to the = axis become, after bending, parabolic
curves convex downward (Fig. 24), whereas straight lines in the y direc-
tion become parabolas convex upward. Along the lines bisecting the
angles between the x and y axes we have x = y, or £ = —y; thus deflec-
tions along these lines, as seen from Eq. (g), are zero. All lines parallel
to these bisecting lines before bending remain straight during bending,
rotating only by some angle. A rectangle abed bounded by such lines
will be twisted as shown in Fig. 24.
Imagine normal sections of the plate
along lines ab, bec, ¢d, and ad. From
Egs. (39) and (40) we conclude that
bending moments along these sections
are zero and that twisting moments
along sections ad and bc are equal to
M, and along sections ab and cd are
equal to —M;. Thus the portion abed of the plate is in the condition of
a plate undergoing pure bending produced by twisting moments uni-
formly distributed along the edges (Fig. 25a). These twisting moments
are formed by the horizontal shearing stresses continuously distributed
over the edge [Eq. (40)]. This horizontal stress distribution can be
replaced by vertical shearing forces which produce the same effect as
the actual distribution of stresses. To show this, let the edge ab be
divided into infinitely narrow rectangles, such as mnpq in Fig. 25b. If
A is the small width of the rectangle, the corresponding twisting couple
is MA and can be formed by two vertical forces equal to M, acting along
the vertical sides of the rectangle. This replacement of the distributed
horizontal forces by a statically equivalent system of two vertical forces
cannot cause any sensible disturbance in the plate, except within a distance
comparable with the thickness of the plate,! which is assumed small.
Proceeding in the same manner with all the rectangles, we find that all
forces M, acting along the vertical sides of the rectangles balance one
another and only two forces M, at the corners a and d are left. Making

Fic. 24

1 This follows from Saint Venant’s principle; see 8. Timoshenko and J. N. Goodier,
“Theory of Elasticity,” 2d ed., p. 33, 1951.
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the same transformation along the other edges of the plate, we conclude
that bending of the plate to the anticlastic surface shown in Fig. 25a can
be produced by forces concentrated at the corners! (Fig. 25¢). Such an
experiment is comparatively simple to perform, and was used for the
experimental verification of the theory of bending of plates discussed
above.? Inthese experiments the deflections of the plate along the line bod
(Fig. 24) were measured and were found to be in very satisfactory agree-
ment with the theoretical results obtained from Eq. (g). Some dis-
crepancies were found only near the edges, and they were more pro-

2M,
C
vldm' i d
7 Ml C
T
q
M, {b) ©
My 2M,
F1a. 25

nounced in the case of comparatively thick plates, as would be expected
from the foregoing discussion of the transformation of twisting couples
along the edges.

As a last example let us consider the bending of a plate (Fig. 19) to &
cylindrical surface having its generating line parallel to the y axis. In
such a case 9%w/dy? = 0, and we find, from Eqgs. (37) and (38),

2, 2,

M,=—D%—;‘; M, = —vD%—:; *)
It is seen that to produce bending of the plate to a cylindrical surface
we must apply not only the moments M, but also the moments M,.
Without these latter moments the plate will be bent to an anticlastic
surface.? The first of equations (k) has already been used in Chap. 1 in
discussing the bending of long rectangular plates to a cylindrical surface.
Although in that discussion we had a bending of plates by lateral loads
and there were not only bending stresses but also vertical shearing stresses

1 This transformation of the force system acting along the edges was first suggested
by Lord Kelvin and P. G. Tait; see “Treatise on Natural Philosophy,” vol. 1, part 2,
p. 203, 1883.

2 Buch experiments were made by A. N4dai, Forschungsard., vols. 170, 171, Berlin,
1915; see also his book “Elastische Platten,” p. 42, Berlin, 1925.

3 We always assume very small deflections or else bending to a developable surface.
The case of bending to a nondevelopable surface when the deflections are not small
will be discussed later: see p. 47
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acting on sections perpendicular to the z axis, it can be concluded from a
comparison with the usual beam theory that the effect of the shearing
forces is negligible in the case of thin plates, and the equations developed
for the case of pure bending can be used with sufficient accuracy for
lateral loading.

12. Strain Energy in Pure Bending of Plates. If a plate is bent by
uniformly distributed bending moments M, and M, (Fig. 19) so that the
xz and yz planes are the principal planes of the deflection surface of the
plate, the strain energy stored in an element, such as shown in Fig. 20,
is obtained by calculating the work done by the moments M, dy and M, dx
on the element during bending of the plate. Since the sides of the ele-
ment remain plane, the work done by the moments M, dy is obtained by
taking half the product of the moment and the angle between the corre-
sponding sides of the element after bending. Since — d%w/dz? represents
the curvature of the plate in the xz plane, the angle corresponding to the
moments M, dy is — (3%w/dx?) dz, and the work done by these moments is

1 w

An analogous expression is also obtained for the work produced by the
moments M, dz. Then the total work, equal to the strain energy of the
element, is
1 2w 92w
Substituting for the moments their expressions (37) and (38), the strain
energy of the elements is represented in the following form:

1 *w\? w\* | , 0w dw
w-po|() + (5) rr @ ee o
Since in the case of pure bending the curvature is constant over the
entire surface of the plate, the total strain energy of the plate will be

obtained if we substitute the area 4 of the plate for the elementary area
dx dy in expression (a). Then

1 ?w\? w\? ?w 0w

If the directions # and y do not coincide with the principal planes of
curvature, there will act on the sides of the element (Fig. 20) not only
the bending moments M, dy and M, dz but also the twisting moments
M., dy and M, dx. The strain energy due to bending moments is repre-
sented by expression (). In deriving the expression for the strain energy
due to twisting moments M., dy we observe that the corresponding angle
of twist is equal to the rate of change of the slope dw/dy, as x varies,



