Chapter3 contains the commands used in Chapter3 in the tutorial.
Some of the commands are edited for fast computation. Each set of commands is followed by a 'pause' command.
% Tested on Matlab 5.3 % History % Revised pab sept2005 % Added sections -> easier to evaluate using cellmode evaluation. % Revised by pab Feb 2005 % -updated calls to kdetools+spec2XXpdf programs % Created by GL July 12, 2000 % from commands used in Chapter 3, written by IR %
pstate = 'off'; xx = load('sea.dat'); xx(:,2) = detrend(xx(:,2)); rate = 8; Tcrcr = dat2wa(xx,0,'c2c','tw',rate); Tc = dat2wa(xx,0,'u2d','tw',rate); disp('Block = 1'), pause(pstate)
Block = 1
clf mean(Tc) max(Tc) t = linspace(0.01,8,200); L2 = 0; kopt = kdeoptset('L2',L2); ftc1 = kde(Tc,kopt,t); pdfplot(ftc1), hold on whisto(Tc,[],[],1) axis([0 8 0 0.5]), hold off wafostamp([],'(ER)') disp('Block = 2'), pause(pstate) clf ftc2 = kdebin(Tc,kopt); disp('Block = 3'), pause(pstate)
ans = 2.0934 ans = 7.0240 Block = 2 Block = 3
clf method = 0; rate = 8; [S, H, Ac, At, Tcf, Tcb, z_ind, yn] = ... dat2steep(xx,rate,method); disp('Block = 4'), pause(pstate) clf [Smax indS]=max(S) [Amax indA]=max(Ac) spwaveplot(yn,[indA indS],'k.') wafostamp([],'(ER)') disp('Block = 5'), pause(pstate)
Block = 4 Smax = 2.5285 indS = 98 Amax = 1.9255 indA = 345 Block = 5
clf inds1 = (5965:5974)'; Nsim = 10; [y1, grec1, g2, test, tobs, mu1o, mu1oStd] = ... reconstruct(xx,inds1,Nsim); spwaveplot(y1,indA-10) hold on plot(xx(inds1,1),xx(inds1,2),'+') lamb = 2.; muLstd = tranproc(mu1o-lamb*mu1oStd,fliplr(grec1)); muUstd = tranproc(mu1o+lamb*mu1oStd,fliplr(grec1)); plot (y1(inds1,1), [muLstd muUstd],'b-') wafostamp([],'(ER)') disp('Block = 6'), pause(pstate)
First reconstruction attempt, e(g-u)=1.1682 Simulation nr: 1 of 10 e(g-g_old)=0.069937, e(g-u)=1.2157 Simulation nr: 2 of 10 e(g-g_old)=0.00025474, e(g-u)=1.216 Elapsed time is 0.851000 seconds. Block = 6
clf plot(xx(inds1,1),xx(inds1,2),'+'), hold on mu = tranproc(mu1o,fliplr(grec1)); plot(y1(inds1,1), mu) disp('Block = 7'), pause(pstate)
Block = 7
clf L2 = 0.6; wnormplot(Ac.^L2) fac = kde(Ac,{'L2',L2},linspace(0.01,3,200)); pdfplot(fac) wafostamp([],'(ER)') simpson(fac.x{1},fac.f) disp('Block = 8'), pause(pstate)
ans = 0.9675 Block = 8
clf Fac = flipud(cumtrapz(fac.x{1},flipud(fac.f))); Fac = [fac.x{1} 1-Fac]; Femp = empdistr(Ac,Fac); axis([0 2 0 1]) wafostamp([],'(ER)') disp('Block = 9'), pause(pstate)
Block = 9
facr = trraylpdf(fac.x{1},'Ac',grec1); Facr = cumtrapz(facr.x{1},facr.f); hold on plot(facr.x{1},Facr,'.') axis([1.25 2.25 0.95 1]) wafostamp([],'(ER)') disp('Block = 10'), pause(pstate)
Block = 10
clf kopt2 = kdeoptset('L2',0.5,'inc',256); Tc = Tcf+Tcb; fTcAc = kdebin([Tc Ac],kopt2); fTcAc.labx={'Tc [s]' 'Ac [m]'} pdfplot(fTcAc) hold on plot(Tc,Ac,'k.') hold off wafostamp([],'(ER)') disp('Block = 11'), pause(pstate)
Warning: Numerical problems may have occured due to the power transformation. Check the KDE for spurious spikes fTcAc = f: [256x256 double] x: {2x1 cell} labx: {'Tc [s]' 'Ac [m]'} title: 'Binned Kernel density estimate ( Epanechnikov )' note: 'Binned Kernel density estimate ( Epanechnikov )' date: '03-Sep-2005 05:18:45' options: [1x1 struct] n: 544 cl: [8x1 double] pl: [10 30 50 70 90 95 99 99.9000] Block = 11
clf S = jonswap([],[5 10]); [m, mt]= spec2mom(S,4,[],0); disp('Block = 12'), pause(pstate) clf spec2bw(S) [ch Sa2] = spec2char(S,[1 3]) disp('Block = 13'), pause(pstate)
Block = 12 ans = 0.6992 ch = 5.0000 7.4933 Sa2 = 0.0553 0.0274 0.0274 0.0233 Block = 13
clf
t = linspace(0,15,100);
h = linspace(0,6,100);
flh = lh83pdf(t,h,[m(1),m(2),m(3)]);
disp('Block = 14'), pause(pstate)
Block = 14
clf
[sk, ku ]=spec2skew(S);
sa = sqrt(m(1));
gh = hermitetr([],[sa sk ku 0]);
flhg = lh83pdf(t,h,[m(1),m(2),m(3)],gh);
disp('Block = 15'), pause(pstate)
Block = 15
clf
t = linspace(0,10,100);
h = linspace(0,7,100);
fcav = cav76pdf(t,h,[m(1) m(2) m(3) m(5)],[]);
disp('Block = 16'), pause(pstate)
Block = 16
clf xx = load('sea.dat'); x = xx; x(:,2) = detrend(x(:,2)); SS = dat2spec2(x); [sk, ku, me, si ] = spec2skew(SS); gh = hermitetr([],[si sk ku me]); Hs = 4*si; r = (0:0.05:1.1*Hs)'; fac_h = trraylpdf(r,'Ac',gh); fat_h = trraylpdf(r,'At',gh); h = (0:0.05:1.7*Hs)'; facat_h = trraylpdf(h,'AcAt',gh); pdfplot(fac_h) hold on pdfplot(fat_h) hold off wafostamp([],'(ER)') disp('Block = 17'), pause(pstate)
The default L is set to 257 Block = 17
clf
TC = dat2tc(xx, me);
tc = tp2mm(TC);
Ac = tc(:,2);
At = -tc(:,1);
AcAt = Ac+At;
disp('Block = 18'), pause(pstate)
Block = 18
clf Fac_h = [fac_h.x{1} cumtrapz(fac_h.x{1},fac_h.f)]; subplot(3,1,1) Fac = empdistr(Ac,Fac_h); hold on plot(r,1-exp(-8*r.^2/Hs^2),'.') axis([1. 2. 0.9 1]) Fat_h = [fat_h.x{1} cumtrapz(fat_h.x{1},fat_h.f)]; subplot(3,1,2) Fat = empdistr(At,Fat_h); hold on plot(r,1-exp(-8*r.^2/Hs^2),'.') axis([1. 2. 0.9 1]) Facat_h = [facat_h.x{1} cumtrapz(facat_h.x{1},facat_h.f)]; subplot(3,1,3) Facat = empdistr(AcAt,Facat_h); hold on plot(r,1-exp(-2*r.^2/Hs^2),'.') axis([1.5 3.5 0.9 1]) wafostamp([],'(ER)') disp('Block = 19'), pause(pstate)
Block = 19
clf S1 = torsethaugen([],[6 8],1); D1 = spreading(101,'cos',pi/2,[15],[],0); D12 = spreading(101,'cos',0,[15],S1.w,1); SD1 = mkdspec(S1,D1); SD12 = mkdspec(S1,D12); disp('Block = 20'), pause(pstate)
Spectrum for Wind dominated sea Block = 20
clf f_tc = spec2tpdf(S1,[],'Tc',[0 11 56],[],4); pdfplot(f_tc) wafostamp([],'(ER)') simpson(f_tc.x{1},f_tc.f) disp('Block = 21'), pause(pstate)
The level u for Gaussian process = 0 writing data Starting Fortran executable. Requested parameters : NIT = 4 integration by quadrature EPSS = 1.000000000000000E-05 RELEPS = 1.000000000000000E-05 EPS2 = 1.000000000000000E-04 xCutOff = 4.264890793922826 NsimMax = 5000 Elapsed time is 8.562000 seconds. ans = 1.0040 Block = 21
clf disp('NIT=5 may take time, running with NIT=2 in the following') %f_Lc = spec2tpdf2(S1,[],'Lc',[0 200 81],[],opt1); f_Lc = spec2tpdf(S1,[],'Lc',[0 200 81],[],2); % f_Lc = spec2tpdf(S1,[],'Lc',[0 200 81],[],5); pdfplot(f_Lc,'-.') wafostamp([],'(ER)') disp('Block = 22'), pause(pstate) % f_Lc_1 = spec2tpdf(S1,[],'Lc',[0 200 81],1.5,5); f_Lc_1 = spec2tpdf(S1,[],'Lc',[0 200 81],1.5,2); %f_Lc_1 = spec2tpdf(S1,[],'Lc',[0 200 81],1.5,opt1); hold on pdfplot(f_Lc_1) wafostamp([],'(ER)') disp('Block = 23'), pause(pstate)
NIT=5 may take time, running with NIT=2 in the following The level u for Gaussian process = 0 writing data Starting Fortran executable. Requested parameters : NIT = 2 integration by quadrature EPSS = 1.000000000000000E-05 RELEPS = 1.000000000000000E-05 EPS2 = 1.000000000000000E-04 xCutOff = 4.264890793922826 NsimMax = 5000 Elapsed time is 2.373000 seconds. Block = 22 The level u for Gaussian process = 0 writing data Starting Fortran executable. Requested parameters : NIT = 2 integration by quadrature EPSS = 1.000000000000000E-05 RELEPS = 1.000000000000000E-05 EPS2 = 1.000000000000000E-04 xCutOff = 4.264890793922826 NsimMax = 5000 Elapsed time is 3.045000 seconds. Block = 23
clf
simpson(f_Lc.x{1},f_Lc.f)
simpson(f_Lc_1.x{1},f_Lc_1.f)
disp('Block = 24'), pause(pstate)
ans = 1.2737 ans = 0.4631 Block = 24
clf % f_Lc_d1 = spec2tpdf(spec2spec(SD1,'rotdir',pi/2),[],... % 'Lc',[0 300 121],[],5); f_Lc_d1 = spec2tpdf(rotspec(SD1,pi/2),[],... 'Lc',[0 300 121],[],2); % f_Lc_d1 = spec2tpdf2(spec2spec(SD1,'rotdir',pi/2),[],... % 'Lc',[0 300 121],[],opt1); pdfplot(f_Lc_d1,'-.') hold on % f_Lc_d12 = spec2tpdf(SD12,[],'Lc',[0 200 81],[],5); f_Lc_d12 = spec2tpdf(SD12,[],'Lc',[0 200 81],[],2); % f_Lc_d12 = spec2tpdf2(SD12,[],'Lc',[0 200 81],[],opt1); pdfplot(f_Lc_d12) hold off wafostamp([],'(ER)') disp('Block = 25'), pause(pstate)
The level u for Gaussian process = -5.6899e-016 writing data Starting Fortran executable. Requested parameters : NIT = 2 integration by quadrature EPSS = 1.000000000000000E-05 RELEPS = 1.000000000000000E-05 EPS2 = 1.000000000000000E-04 xCutOff = 4.264890793922826 NsimMax = 5000 Elapsed time is 7.952000 seconds. The level u for Gaussian process = 0 writing data Starting Fortran executable. Requested parameters : NIT = 2 integration by quadrature EPSS = 1.000000000000000E-05 RELEPS = 1.000000000000000E-05 EPS2 = 1.000000000000000E-04 xCutOff = 4.264890793922826 NsimMax = 5000 Elapsed time is 3.144000 seconds. Block = 25
disp('Run the following example only if you want a check on computing time') disp('Edit the command file and remove %') % clf % f_Lc_d1_5 = spec2tpdf(spec2spec(SD1,'rotdir',pi/2),[],... % 'Lc',[0 300 121],[],5); % f_Lc_d1_3 = spec2tpdf(spec2spec(SD1,'rotdir',pi/2),[],... % 'Lc',[0 300 121],[],3); % f_Lc_d1_2 = spec2tpdf(spec2spec(SD1,'rotdir',pi/2),[],... % 'Lc',[0 300 121],[],2); % f_Lc_d1_0 = spec2tpdf(spec2spec(SD1,'rotdir',pi/2),[],... % 'Lc',[0 300 121],[],0); % f_Lc_d1_n4 = spec2tpdf2(spec2spec(SD1,'rotdir',pi/2),[],... % 'Lc',[0 400 161],-4); % pdfplot(f_Lc_d1_5) % hold on % pdfplot(f_Lc_d1_2) % pdfplot(f_Lc_d1_0) % pdfplot(f_Lc_d1_n4) % simpson(f_Lc_d1_n4.x{1},f_Lc_d1_n4.f) disp('Block = 26'), pause(pstate)
Run the following example only if you want a check on computing time Edit the command file and remove % Block = 26
clf xx = load('sea.dat'); x = xx; x(:,2) = detrend(x(:,2)); SS = dat2spec2(x); si = sqrt(spec2mom(SS,1)); SS.tr = dat2tr(x); Hs = 4*si method = 0; rate = 2; [S, H, Ac, At, Tcf, Tcb, z_ind, yn] = dat2steep(x,rate,method); t = linspace(0.01,8,200); ftc1 = kde(Tc,{'L2',0},t); pdfplot(ftc1) hold on % f_t = spec2tpdf(SS,[],'Tc',[0 8 81],0,4); f_t = spec2tpdf(SS,[],'Tc',[0 8 81],0,2); simpson(f_t.x{1},f_t.f) pdfplot(f_t,'-.') hold off wafostamp([],'(ER)') disp('Block = 27'), pause(pstate)
The default L is set to 257 Hs = 1.8901 The level u for Gaussian process = 6.7181e-006 writing data Starting Fortran executable. Requested parameters : NIT = 2 integration by quadrature EPSS = 1.000000000000000E-05 RELEPS = 1.000000000000000E-05 EPS2 = 1.000000000000000E-04 xCutOff = 4.264890793922826 NsimMax = 5000 Elapsed time is 2.063000 seconds. ans = 1.0648 Block = 27
clf % f_t2 = spec2tpdf(SS,[],'Tc',[0 8 81],[Hs/2],4); f_t2 = spec2tpdf(SS,[],'Tc',[0 8 81],[Hs/2],2); Pemp = sum(Ac>Hs/2)/sum(Ac>0) simpson(f_t2.x{1},f_t2.f) index = find(Ac>Hs/2); ftc1 = kde(Tc(index),{'L2',0},t); ftc1.f = Pemp*ftc1.f; pdfplot(ftc1) hold on pdfplot(f_t2,'-.') hold off wafostamp([],'(ER)') disp('Block = 28'), pause(pstate) % clf % f_tcc2 = spec2tccpdf(SS,[],'t>',[0 12 61],[Hs/2],[0],-1); % simpson(f_tcc2.x{1},f_tcc2.f) % f_tcc3 = spec2tccpdf(SS,[],'t>',[0 12 61],[Hs/2],[0],3,5); % f_tcc3 = spec2tccpdf(SS,[],'t>',[0 12 61],[Hs/2],[0],1,5); % simpson(f_tcc3.x{1},f_tcc3.f) % pdfplot(f_tcc2,'-.') % hold on % pdfplot(f_tcc3) % hold off disp('Block = 29'), pause(pstate)
The level u for Gaussian process = 6.7181e-006 writing data Starting Fortran executable. Requested parameters : NIT = 2 integration by quadrature EPSS = 1.000000000000000E-05 RELEPS = 1.000000000000000E-05 EPS2 = 1.000000000000000E-04 xCutOff = 4.264890793922826 NsimMax = 5000 Elapsed time is 3.755000 seconds. Pemp = 0.1778 ans = 0.1580 Block = 28 Block = 29
clf [TC tc_ind v_ind] = dat2tc(yn,[],'dw'); N = length(tc_ind); t_ind = tc_ind(1:2:N); c_ind = tc_ind(2:2:N); Pemp = sum(yn(t_ind,2)<-Hs/2 & yn(c_ind,2)>Hs/2)/length(t_ind) ind = find(yn(t_ind,2)<-Hs/2 & yn(c_ind,2)>Hs/2); spwaveplot(yn,ind(2:4)) wafostamp([],'(ER)') disp('Block = 30'), pause(pstate)
The level v is set to: 4.3359e-005 Pemp = 0.0370 Block = 30
clf Tcc = yn(v_ind(1+2*ind),1)-yn(v_ind(1+2*(ind-1)),1); t = linspace(0.01,14,200); L2 = 0; ftcc1 = kde(Tcc,{'kernel' 'epan','L2',L2},t); ftcc1.f = Pemp*ftcc1.f; pdfplot(ftcc1,'-.') wafostamp([],'(ER)') disp('Block = 31'), pause(pstate) disp('The rest of this chapter deals with joint densities.') disp('Some calculations may take some time.') disp('You could experiment with other NIT.') %return
Block = 31 The rest of this chapter deals with joint densities. Some calculations may take some time. You could experiment with other NIT.
clf f_tcc22_1 = spec2tccpdf(SS,[],'t>',[0 12 61],[Hs/2],[Hs/2],-1); simpson(f_tcc22_1.x{1},f_tcc22_1.f) hold on pdfplot(f_tcc22_1) hold off wafostamp([],'(ER)') disp('Block = 32'), pause(pstate)
The level u for Gaussian process = 6.7181e-006 ans = 0 writing data Starting Fortran executable. Requested parameters : SCIS = 1 SADAPT if NDIM<9 otherwise by KRBVRC EPSS = 1.000000000000000E-03 RELEPS = 1.000000000000000E-05 EPS2 = 1.000000000000000E-04 xCutOff = 4.764890793922826 NsimMax = 6000 Ready: 1 of 61 Ready: 2 of 61 Ready: 3 of 61 Ready: 4 of 61 Ready: 5 of 61 Ready: 6 of 61 Ready: 7 of 61 Ready: 8 of 61 Ready: 9 of 61 Ready: 10 of 61 Ready: 11 of 61 Ready: 12 of 61 Ready: 13 of 61 Ready: 14 of 61 Ready: 15 of 61 Ready: 16 of 61 Ready: 17 of 61 Ready: 18 of 61 Ready: 19 of 61 Ready: 20 of 61 Ready: 21 of 61 Ready: 22 of 61 Ready: 23 of 61 Ready: 24 of 61 Ready: 25 of 61 Ready: 26 of 61 Ready: 27 of 61 Ready: 28 of 61 Ready: 29 of 61 Ready: 30 of 61 Ready: 31 of 61 Ready: 32 of 61 Ready: 33 of 61 Ready: 34 of 61 Ready: 35 of 61 Ready: 36 of 61 Ready: 37 of 61 Ready: 38 of 61 Ready: 39 of 61 Ready: 40 of 61 Ready: 41 of 61 Ready: 42 of 61 Ready: 43 of 61 Ready: 44 of 61 Ready: 45 of 61 Ready: 46 of 61 Ready: 47 of 61 Ready: 48 of 61 Ready: 49 of 61 Ready: 50 of 61 Ready: 51 of 61 Ready: 52 of 61 Ready: 53 of 61 Cndsrt4,Error Covariance negative definit Ready: 54 of 61 Ready: 55 of 61 Cndsrt4,Error Covariance negative definit Cndsrt4,Error Covariance negative definit Cndsrt4,Error Covariance negative definit Ready: 56 of 61 Ready: 57 of 61 Ready: 58 of 61 Ready: 59 of 61 Cndsrt4,Error Covariance negative definit Cndsrt4,Error Covariance negative definit Cndsrt4,Error Covariance negative definit Cndsrt4,Error Covariance negative definit Ready: 60 of 61 Cndsrt4,Error Covariance negative definit Cndsrt4,Error Covariance negative definit Ready: 61 of 61 f = f: [1x61 double] x: {[61x1 double]} labx: {'T [s]'} title: 'Density of Tcc with Ac>0.94507 and At>0.94507' note: [] date: '03-Sep-2005 05:30:18' nit: -1 speed: 4 SCIS: 1 u: -0.0168 elapsedTime: 649.2030 ans = 0.0360 Block = 32
clf yy = load('gfaksr89.dat'); SS = dat2spec(yy); si = sqrt(spec2mom(SS,1)); SS.tr = dat2tr(yy); Hs = 4*si v = gaus2dat([0 0],SS.tr); v = v(2) disp('Block = 33'), pause(pstate)
The default L is set to 305 Hs = 6.5567 v = -0.0322 Block = 33
clf [TC, tc_ind, v_ind] = dat2tc(yy,v,'dw'); N = length(tc_ind); t_ind = tc_ind(1:2:N); c_ind = tc_ind(2:2:N); v_ind_d = v_ind(1:2:N+1); v_ind_u = v_ind(2:2:N+1); T_d = ecross(yy(:,1),yy(:,2),v_ind_d,v); T_u = ecross(yy(:,1),yy(:,2),v_ind_u,v); % Old call %T_d = yy(v_ind_d,1)- yy(v_ind_d,2)* ... % (yy(2,1)-yy(1,1))./(yy(v_ind_d+1,2)-yy(v_ind_d,2)); %T_u = yy(v_ind_u,1)- yy(v_ind_u,2)* ... % (yy(2,1)-yy(1,1))./(yy(v_ind_u+1,2)-yy(v_ind_u,2)); Tc = T_d(2:end)-T_u(1:end); Tt = T_u(1:end)-T_d(1:end-1); Tcf = yy(c_ind,1)-T_u; Ac = yy(c_ind,2)-v; At = v-yy(t_ind,2); disp('Block = 34'), pause(pstate)
Block = 34
clf t = linspace(0.01,15,200); kopt3 = kdeoptset('hs',0.25,'L2',0); ftc1 = kde(Tc,kopt3,t); ftt1 = kde(Tt,kopt3,t); pdfplot(ftt1,'k') hold on pdfplot(ftc1,'k-.') f_tc4 = spec2tpdf(SS,[],'Tc',[0 12 81],0,4,5); f_tc2 = spec2tpdf(SS,[],'Tc',[0 12 81],0,2,5); f_tc = spec2tpdf(SS,[],'Tc',[0 12 81],0,-1); pdfplot(f_tc,'b') hold off wafostamp([],'(ER)') disp('Block = 35'), pause(pstate)
The level u for Gaussian process = 4.8387e-006 writing data Starting Fortran executable. Requested parameters : NIT = 4 integration by quadrature EPSS = 1.000000000000000E-05 RELEPS = 1.000000000000000E-05 EPS2 = 1.000000000000000E-04 xCutOff = 4.264890793922826 NsimMax = 5000 Elapsed time is 28.080000 seconds. The level u for Gaussian process = 4.8387e-006 writing data Starting Fortran executable. Requested parameters : NIT = 2 integration by quadrature EPSS = 1.000000000000000E-05 RELEPS = 1.000000000000000E-05 EPS2 = 1.000000000000000E-04 xCutOff = 4.264890793922826 NsimMax = 5000 Elapsed time is 1.773000 seconds. The level u for Gaussian process = 4.8387e-006 writing data Starting Fortran executable. Requested parameters : SCIS = 1 SADAPT if NDIM<9 otherwise by KRBVRC EPSS = 1.000000000000000E-03 RELEPS = 1.000000000000000E-05 EPS2 = 1.000000000000000E-04 xCutOff = 4.764890793922826 NsimMax = 5000 Elapsed time is 21.701000 seconds. Block = 35
clf ind = find(4.4<Tc & Tc<4.6); f_AcTcf = kde([Tcf(ind) Ac(ind)],{'L2',[1 .5]}); plot(Tcf(ind), Ac(ind),'.'); hold on pdfplot(f_AcTcf) wafostamp([],'(ER)') disp('Block = 36'), pause(pstate)
Block = 36
clf %opt1 = rindoptset('speed',5,'method',3); %opt2 = rindoptset('speed',5,'nit',2,'method',0); opt1 = rindoptset('speed',9,'method',3); opt2 = rindoptset('speed',7,'nit',2,'method',0); f_tcfac1 = spec2thpdf(SS,[],'TcfAc',[4.5 4.5 46],[0:0.25:8],opt1); f_tcfac2=spec2thpdf(SS,[],'TcfAc',[4.5 4.5 46],[0:0.25:8],opt2); plot(Tcf(ind), Ac(ind),'.'); hold on pdfplot(f_tcfac1,'-.') pdfplot(f_tcfac2) simpson(f_tcfac1.x{1},simpson(f_tcfac1.x{2},f_tcfac1.f,1)) simpson(f_tcfac2.x{1},simpson(f_tcfac2.x{2},f_tcfac2.f,1)) f_tcf4=spec2tpdf(SS,[],'Tc',[4.5 4.5 46],[0:0.25:8],6); f_tcf4.f(46) wafostamp([],'(ER)') disp('Block = 37'), pause(pstate)
The level u for Gaussian process = 4.8387e-006 The level u for Gaussian process = 4.8387e-006 ans = 0.2439 ans = 0.2266 The level u for Gaussian process = 4.8387e-006 writing data Starting Fortran executable. Requested parameters : NIT = 6 integration by quadrature EPSS = 1.000000000000000E-05 RELEPS = 1.000000000000000E-05 EPS2 = 1.000000000000000E-04 xCutOff = 4.264890793922826 NsimMax = 5000 Ready: 46 of 46 Elapsed time is 1.772000 seconds. ans = 0.2196 Block = 37
clf f_tcac_s = spec2thpdf(SS,[],'TcAc',[0 12 81],[Hs/2:0.1:2*Hs],opt1); disp('Block = 38'), pause(pstate) clf mom = spec2mom(SS,4,[],0); t = f_tcac_s.x{1}; h = f_tcac_s.x{2}; flh_g = lh83pdf(t',h',[mom(1),mom(2),mom(3)],SS.tr); clf ind=find(Ac>Hs/2); plot(Tc(ind), Ac(ind),'.'); hold on pdfplot(flh_g,'k-.') pdfplot(f_tcac_s) wafostamp([],'(ER)') disp('Block = 39'), pause(pstate)
The level u for Gaussian process = 4.8387e-006 Block = 38 Block = 39
clf % f_tcac = spec2thpdf(SS,[],'TcAc',[0 12 81],[0:0.2:8],opt1); % pdfplot(f_tcac) disp('Block = 40'), pause(pstate)
Block = 40
clf tp = dat2tp(yy); Mm = fliplr(tp2mm(tp)); fmm = kde(Mm); f_mM = spec2mmtpdf(SS,[],'mm',[],[-7 7 51],opt2); clf pdfplot(f_mM,'-.') hold on pdfplot(fmm,'k-') hold off wafostamp([],'(ER)') disp('Block = 41'), pause(pstate)
The level u for Gaussian process = 4.8387e-006 Block = 41
clf ind = find(Mm(:,1)>v & Mm(:,2)<v); Mmv = abs(Mm(ind,:)-v); fmmv = kde(Mmv); f_vmm = spec2mmtpdf(SS,[],'vmm',[],[-7 7 51],opt2); clf pdfplot(fmmv,'k-') hold on pdfplot(f_vmm,'-.') hold off wafostamp([],'(ER)') disp('Block = 42'), pause(pstate)
The level u for Gaussian process = 4.8387e-006 Block = 42
clf facat = kde([Ac At]); f_acat = spec2mmtpdf(SS,[],'AcAt',[],[-7 7 51],opt2); clf pdfplot(f_acat,'-.') hold on pdfplot(facat,'k-') hold off wafostamp([],'(ER)') disp('Block = 43'), pause(pstate)
Error: File: c:\pab\matlab\wafo\trgauss\private\mctp2tc.m Line: 26 Column: 4 A BREAK statement appeared outside of a loop. Use RETURN instead.