WWEIBRND Random matrices a the Weibull distribution. CALL: R = wweibrnd(a,c,sz) R = a matrix of random numbers from the Weibull distribution a, c = parameters of the Weibull distribution sz = size(R) (Default common size of k,s and m0) sz can be a comma separated list or a vector giving the size of R (see zeros for options). The Weibull distribution is defined by the distribution function F(x) = 1 - exp(-(x/a)^c), x>=0, a,b>0 The random numbers are generated by the inverse method. Example: R=wweibrnd(1,10,1,100); phat=wweibplot(R) See also wweibinv
Check if all input arguments are either scalar or of common size. | |
Inverse of the Weibull distribution function | |
Display message and abort function. |
Random points from a bivariate DIST2D distribution | |
Random points from a bivariate MDIST2D distribution | |
Random points from MK87 distribution of steepness and wave height. | |
Random numbers from the 2D Weibull distribution. |
001 function R = wweibrnd(a,c,varargin) 002 %WWEIBRND Random matrices a the Weibull distribution. 003 % 004 % CALL: R = wweibrnd(a,c,sz) 005 % 006 % R = a matrix of random numbers from the Weibull distribution 007 % a, c = parameters of the Weibull distribution 008 % sz = size(R) (Default common size of k,s and m0) 009 % sz can be a comma separated list or a vector 010 % giving the size of R (see zeros for options). 011 % 012 % The Weibull distribution is defined by the distribution function 013 % 014 % F(x) = 1 - exp(-(x/a)^c), x>=0, a,b>0 015 % 016 % The random numbers are generated by the inverse method. 017 % 018 % Example: 019 % R=wweibrnd(1,10,1,100); 020 % phat=wweibplot(R) 021 % 022 % See also wweibinv 023 024 % Reference: Cohen & Whittle, (1988) "Parameter Estimation in Reliability 025 % and Life Span Models", p. 25 ff, Marcel Dekker. 026 027 028 % Tested on: matlab 5.3 029 % History: 030 % revised pab 23.10.2000 031 % - added comnsize 032 % - added greater flexibility on the sizing of R 033 % rewritten ms 15.06.2000 034 035 error(nargchk(2,inf,nargin)) 036 if nargin==2, 037 [errorcode a c] = comnsize(a,c); 038 else 039 [errorcode a c] = comnsize(a,c,zeros(varargin{:})); 040 end 041 if errorcode > 0 042 error('a and c must be of common size or scalar.'); 043 end 044 csiz=size(a); 045 R = wweibinv(rand(csiz),a,c); 046 047 048 049 050 051
Comments or corrections to the WAFO group