WRAYLPDF Rayleigh probability density function CALL: f = wraylpdf(x,b); f = density function evaluated at x b = parameter The Rayleigh distribution is defined by its cdf F(x;b) = 1 - exp(-x^2/(2b^2)), x>=0, b>0 Example: x = linspace(0,4,200); p1 = wraylpdf(x,1); p2 = wraylpdf(x,0.5); plot(x,p1,x,p2)
Check if all input arguments are either scalar or of common size. | |
Display message and abort function. | |
Not-a-Number. |
Brodtkorb (2004) joint (Scf,Hd) PDF from Japan Sea. | |
Brodtkorb (2004) joint (Scf,Hd) PDF of laboratory data. | |
Brodtkorb et.al (2000) joint (Scf,Hd) PDF from North Sea. | |
is an internal function to dist2dcdf dist2dprb. | |
Joint 2D PDF computed as f(x1|X2=x2)*f(x2) | |
Demonstrate the difference between transformation- and ordinary-KDE | |
Joint 2D PDF due to Plackett given as f{x1}*f{x2}*G(x1,x2;Psi). | |
Ochi's (1998) PDF of peaks and troughs of non-gaussian processes | |
Tayfun (1981) PDF of breaking limited wave heights | |
Tayfun (1990) PDF of large wave heights |
001 function f = wraylpdf(x,b); 002 %WRAYLPDF Rayleigh probability density function 003 % 004 % CALL: f = wraylpdf(x,b); 005 % 006 % f = density function evaluated at x 007 % b = parameter 008 % 009 % The Rayleigh distribution is defined by its cdf 010 % 011 % F(x;b) = 1 - exp(-x^2/(2b^2)), x>=0, b>0 012 % 013 % Example: 014 % x = linspace(0,4,200); 015 % p1 = wraylpdf(x,1); p2 = wraylpdf(x,0.5); 016 % plot(x,p1,x,p2) 017 018 % Reference: Cohen & Whittle, (1988) "Parameter Estimation in Reliability 019 % and Life Span Models", p. 181 ff, Marcel Dekker. 020 021 022 % Tested on; Matlab 5.3 023 % History: 024 % revised pab 24.10.2000 025 % - added comnsize, nargchk 026 % added ms 15.06.2000 027 028 029 error(nargchk(2,2,nargin)) 030 [errorcode, x, b] = comnsize (x,b); 031 if (errorcode > 0) 032 error ('x and b must be of common size or scalar'); 033 end 034 035 f=zeros(size(x)); 036 037 k = find ((x>=0)&(b>0)); 038 if any (k) 039 f(k)=x(k).*exp(-x(k).^2./(2*b(k).^2))./b(k).^2; 040 end 041 042 k1 = find (b<=0); 043 if any (k1) 044 tmp=NaN; 045 f(k1) = tmp(ones(size(k1))); 046 end 047 048
Comments or corrections to the WAFO group