WRAYLCDF Rayleigh cumulative distribution function CALL: F = wraylcdf(x,b); F = distribution function evaluated at x b = parameter The Rayleigh distribution is defined by its cdf F(x;b) = 1 - exp(-x^2/(2b^2)), x>=0 Example: x = linspace(0,4,200); p1 = wraylcdf(x,1); p2 = wraylcdf(x,0.5); plot(x,p1,x,p2)
Check if all input arguments are either scalar or of common size. | |
Display message and abort function. | |
Not-a-Number. |
Joint 2D CDF computed as int F(X1 | |
is an internal function to dist2dcdf dist2dprb. | |
Joint 2D CDF due to Plackett | |
Joint 2D PDF due to Plackett given as f{x1}*f{x2}*G(x1,x2;Psi). | |
Ochi's (1998) CDF of peaks and troughs of non-gaussian processes | |
Tayfun (1981) CDF of breaking limited wave heights | |
Tayfun (1990) CDF of large wave heights | |
Parameter estimates for Rayleigh data. |
001 function F = wraylcdf(x,b); 002 %WRAYLCDF Rayleigh cumulative distribution function 003 % 004 % CALL: F = wraylcdf(x,b); 005 % 006 % F = distribution function evaluated at x 007 % b = parameter 008 % 009 % The Rayleigh distribution is defined by its cdf 010 % 011 % F(x;b) = 1 - exp(-x^2/(2b^2)), x>=0 012 % 013 % Example: 014 % x = linspace(0,4,200); 015 % p1 = wraylcdf(x,1); p2 = wraylcdf(x,0.5); 016 % plot(x,p1,x,p2) 017 018 % Reference: Cohen & Whittle, (1988) "Parameter Estimation in Reliability 019 % and Life Span Models", p. 181 ff, Marcel Dekker. 020 021 022 % Tested on; Matlab 5.3 023 % History: 024 % revised pab 24.10.2000 025 % - added comnsize, nargchk 026 % added ms 15.06.2000 027 028 error(nargchk(2,2,nargin)) 029 [errorcode, x, b] = comnsize (x,b); 030 if (errorcode > 0) 031 error ('x and b must be of common size or scalar'); 032 end 033 034 F=zeros(size(x)); 035 036 k = find ((x>=0)&(b>0)); 037 if any (k) 038 F(k)=1-exp(-x(k).^2./(2*b(k).^2)); 039 end 040 041 k1 = find (b<=0); 042 if any (k1) 043 tmp=NaN; 044 F(k1) = tmp(ones(size(k1))); 045 end 046 047 048 049 050
Comments or corrections to the WAFO group