MCTP2RFM Calculates the rainflow matrix for a MCTP. CALL: [Frfc,mu_rfc] = mtp2rfc(F); [Frfc,mu_rfc] = mtp2rfc(F,c_m); Frfc = Rainflow Matrix (Rainflow Intensity) [n,n] mu_rfc = Rainflow Counting Intensity [n,n] F = Cell array of min-Max and Max-min matrices {1,2} F{1,1} = min-Max matrix [n,n] F{1,2} = Max-min matrix [n,n] c_m = Intensity of local minima If the matrix F{1,2} (F{1,2}=[]) is not given, then the process will be assumed to be time-reversible. Calculates the rainflow matrix for a Markov chain of turning points. Example: param = [-1 1 32]; u = levels(param); F = mktestmat(param,[-0.2 0.2],0.15,2); Frfc = mctp2rfm({F []}); cmatplot(u,u,Frfc) See also rfm2mctp, smctp2rfm, mctp2arfm, cmatplot, mc2rfm
% CHAPTER4 contains the commands used in Chapter 4 of the tutorial | |
Script to computer exercises 2 | |
Quick test of the routines in module 'cycles' | |
Quick test of the routines in module 'markov' | |
Intensity of rainflow cycles computed from St |
001 function [F_rfc,mu_rfc] = mctp2rfm(F,c_m) 002 % MCTP2RFM Calculates the rainflow matrix for a MCTP. 003 % 004 % CALL: [Frfc,mu_rfc] = mtp2rfc(F); 005 % [Frfc,mu_rfc] = mtp2rfc(F,c_m); 006 % 007 % Frfc = Rainflow Matrix (Rainflow Intensity) [n,n] 008 % mu_rfc = Rainflow Counting Intensity [n,n] 009 % 010 % F = Cell array of min-Max and Max-min matrices {1,2} 011 % F{1,1} = min-Max matrix [n,n] 012 % F{1,2} = Max-min matrix [n,n] 013 % c_m = Intensity of local minima 014 % 015 % If the matrix F{1,2} (F{1,2}=[]) is not given, then the process will 016 % be assumed to be time-reversible. 017 % 018 % Calculates the rainflow matrix for a Markov chain of 019 % turning points. 020 % 021 % Example: 022 % param = [-1 1 32]; u = levels(param); 023 % F = mktestmat(param,[-0.2 0.2],0.15,2); 024 % Frfc = mctp2rfm({F []}); 025 % cmatplot(u,u,Frfc) 026 % 027 % See also rfm2mctp, smctp2rfm, mctp2arfm, cmatplot, mc2rfm 028 029 % References 030 % 031 % P. Johannesson (1999): 032 % Rainflow Analysis of Switching Markov Loads. 033 % PhD thesis, Mathematical Statistics, Centre for Mathematical Sciences, 034 % Lund Institute of Technology. 035 % 036 % P. Johannesson (1998): 037 % Rainflow Cycles for Switching Processes with Markov Structure. 038 % Probability in the Engineering and Informational Sciences, 039 % Vol. 12, No. 2, pp. 143-175. 040 041 % Tested on Matlab 5.3 042 % 043 % History: 044 % Revised by PJ 23-Nov-1999 045 % updated for WAFO 046 % Created by PJ (Pär Johannesson) 1997 047 % Copyright (c) 1997 by Pär Johannesson 048 % Toolbox: Rainflow Cycles for Switching Processes V.1.0, 2-Oct-1997 049 050 % Check input arguments 051 052 ni = nargin; 053 no = nargout; 054 error(nargchk(1,2,ni)); 055 056 if ni < 2 057 c_m=[]; 058 end 059 060 [F_rfc,mu_rfc] = smctp2rfm(1,F,c_m); 061 062
Comments or corrections to the WAFO group